--- library_name: transformers license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: interview_classifier results: [] --- # interview_classifier This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.2980 - Accuracy: 0.3679 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 152 | 2.5214 | 0.2263 | | No log | 2.0 | 304 | 2.4518 | 0.2272 | | No log | 3.0 | 456 | 2.3823 | 0.3004 | | 2.461 | 4.0 | 608 | 2.3026 | 0.3432 | | 2.461 | 5.0 | 760 | 2.2736 | 0.3531 | | 2.461 | 6.0 | 912 | 2.2958 | 0.3490 | | 1.7996 | 7.0 | 1064 | 2.2739 | 0.3671 | | 1.7996 | 8.0 | 1216 | 2.2829 | 0.3737 | | 1.7996 | 9.0 | 1368 | 2.2985 | 0.3638 | | 1.3781 | 10.0 | 1520 | 2.2980 | 0.3679 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.19.1