--- language: - en --- End-to-end Neural Diarization with Encoder-Decoder Based Attractors trained on AMI-headset. This example could be found at `egs2/ami/diar1`. ## Configurations: - Use ESPNet's default frontend to extract features. The sampling rate is 8000 Hz, with a frame length of 25 ms and a frame shift of 10 ms. The frontend extracts 23 log-scaled Mel-filterbanks. - Use 4 layer stacked Transformer encoder, each outputs 256-dimensional frame-wise embeddings. - Use the ESPNet' standard rnn attractor (LSTM) with hidden size of 256. - Initial training uses data with 4 speakers for 500 epochs, following `spk4/diar_train_diar_eda_raw_spk4/config.yaml`. - Adaptation involves fine-tuning the model using data with 3 and 5 speakers respectively for 20 epochs respectively, using `spk3/diar_train_diar_eda_raw_spk3/config.yaml` and `spk5/diar_train_diar_eda_raw_spk5/config.yaml` respectively. ## RESULTS The following results were obtained using the checkpoint `spk5/diar_train_diar_eda_raw_spk5/20epoch.pth`, tested on the test and development sets with the 4-speakers. ### Environments - date: `Thu Dec 19 22:43:37 EST 2024` - python version: `3.11.10 (main, Oct 3 2024, 07:29:13) [GCC 11.2.0]` - espnet version: `espnet 202409` - pytorch version: `pytorch 2.4.0` - Git hash: `c12b3d59ca4fd8847edf274e56a1716474d2a30e` - Commit date: `Thu Dec 19 21:58:26 2024 -0500` ### spk4 #### DER diarized_test |threshold_median_collar|DER| |---|---| |result_th0.3_med11_collar0.0|72.44| |result_th0.3_med1_collar0.0|74.64| |result_th0.4_med11_collar0.0|70.60| |result_th0.4_med1_collar0.0|72.30| |result_th0.5_med11_collar0.0|70.45| |result_th0.5_med1_collar0.0|72.02| |result_th0.6_med11_collar0.0|71.85| |result_th0.6_med1_collar0.0|73.41| |result_th0.7_med11_collar0.0|75.56| |result_th0.7_med1_collar0.0|77.02| ### spk4 #### DER diarized_dev |threshold_median_collar|DER| |---|---| |result_th0.3_med11_collar0.0|74.37| |result_th0.3_med1_collar0.0|75.96| |result_th0.4_med11_collar0.0|71.69| |result_th0.4_med1_collar0.0|72.94| |result_th0.5_med11_collar0.0|70.83| |result_th0.5_med1_collar0.0|72.12| |result_th0.6_med11_collar0.0|71.96| |result_th0.6_med1_collar0.0|73.34| |result_th0.7_med11_collar0.0|75.81| |result_th0.7_med1_collar0.0|76.99|