esunn commited on
Commit
bbddc40
1 Parent(s): 1b61269

Upload folder using huggingface_hub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +26 -33
  2. README.md +158 -0
  3. adapter_config.json +34 -0
  4. adapter_model.bin +3 -0
  5. checkpoint-1377/README.md +202 -0
  6. checkpoint-1377/adapter_config.json +34 -0
  7. checkpoint-1377/adapter_model.safetensors +3 -0
  8. checkpoint-1377/optimizer.pt +3 -0
  9. checkpoint-1377/rng_state_0.pth +3 -0
  10. checkpoint-1377/rng_state_1.pth +3 -0
  11. checkpoint-1377/rng_state_2.pth +3 -0
  12. checkpoint-1377/rng_state_3.pth +3 -0
  13. checkpoint-1377/rng_state_4.pth +3 -0
  14. checkpoint-1377/rng_state_5.pth +3 -0
  15. checkpoint-1377/rng_state_6.pth +3 -0
  16. checkpoint-1377/scheduler.pt +3 -0
  17. checkpoint-1377/special_tokens_map.json +24 -0
  18. checkpoint-1377/tokenizer.model +3 -0
  19. checkpoint-1377/tokenizer_config.json +43 -0
  20. checkpoint-1377/trainer_state.json +0 -0
  21. checkpoint-1377/training_args.bin +3 -0
  22. checkpoint-459/README.md +202 -0
  23. checkpoint-459/adapter_config.json +34 -0
  24. checkpoint-459/adapter_model.safetensors +3 -0
  25. checkpoint-459/optimizer.pt +3 -0
  26. checkpoint-459/rng_state_0.pth +3 -0
  27. checkpoint-459/rng_state_1.pth +3 -0
  28. checkpoint-459/rng_state_2.pth +3 -0
  29. checkpoint-459/rng_state_3.pth +3 -0
  30. checkpoint-459/rng_state_4.pth +3 -0
  31. checkpoint-459/rng_state_5.pth +3 -0
  32. checkpoint-459/rng_state_6.pth +3 -0
  33. checkpoint-459/scheduler.pt +3 -0
  34. checkpoint-459/special_tokens_map.json +24 -0
  35. checkpoint-459/tokenizer.model +3 -0
  36. checkpoint-459/tokenizer_config.json +43 -0
  37. checkpoint-459/trainer_state.json +3266 -0
  38. checkpoint-459/training_args.bin +3 -0
  39. checkpoint-918/README.md +202 -0
  40. checkpoint-918/adapter_config.json +34 -0
  41. checkpoint-918/adapter_model.safetensors +3 -0
  42. checkpoint-918/optimizer.pt +3 -0
  43. checkpoint-918/rng_state_0.pth +3 -0
  44. checkpoint-918/rng_state_1.pth +3 -0
  45. checkpoint-918/rng_state_2.pth +3 -0
  46. checkpoint-918/rng_state_3.pth +3 -0
  47. checkpoint-918/rng_state_4.pth +3 -0
  48. checkpoint-918/rng_state_5.pth +3 -0
  49. checkpoint-918/rng_state_6.pth +3 -0
  50. checkpoint-918/scheduler.pt +3 -0
.gitattributes CHANGED
@@ -1,35 +1,28 @@
1
- *.7z filter=lfs diff=lfs merge=lfs -text
2
- *.arrow filter=lfs diff=lfs merge=lfs -text
3
  *.bin filter=lfs diff=lfs merge=lfs -text
4
- *.bz2 filter=lfs diff=lfs merge=lfs -text
5
- *.ckpt filter=lfs diff=lfs merge=lfs -text
6
- *.ftz filter=lfs diff=lfs merge=lfs -text
7
- *.gz filter=lfs diff=lfs merge=lfs -text
8
- *.h5 filter=lfs diff=lfs merge=lfs -text
9
- *.joblib filter=lfs diff=lfs merge=lfs -text
10
- *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
- *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
- *.model filter=lfs diff=lfs merge=lfs -text
13
- *.msgpack filter=lfs diff=lfs merge=lfs -text
14
- *.npy filter=lfs diff=lfs merge=lfs -text
15
- *.npz filter=lfs diff=lfs merge=lfs -text
16
- *.onnx filter=lfs diff=lfs merge=lfs -text
17
- *.ot filter=lfs diff=lfs merge=lfs -text
18
- *.parquet filter=lfs diff=lfs merge=lfs -text
19
- *.pb filter=lfs diff=lfs merge=lfs -text
20
- *.pickle filter=lfs diff=lfs merge=lfs -text
21
- *.pkl filter=lfs diff=lfs merge=lfs -text
22
- *.pt filter=lfs diff=lfs merge=lfs -text
23
- *.pth filter=lfs diff=lfs merge=lfs -text
24
- *.rar filter=lfs diff=lfs merge=lfs -text
25
  *.safetensors filter=lfs diff=lfs merge=lfs -text
26
- saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
- *.tar.* filter=lfs diff=lfs merge=lfs -text
28
- *.tar filter=lfs diff=lfs merge=lfs -text
29
- *.tflite filter=lfs diff=lfs merge=lfs -text
30
- *.tgz filter=lfs diff=lfs merge=lfs -text
31
- *.wasm filter=lfs diff=lfs merge=lfs -text
32
- *.xz filter=lfs diff=lfs merge=lfs -text
33
- *.zip filter=lfs diff=lfs merge=lfs -text
34
- *.zst filter=lfs diff=lfs merge=lfs -text
35
- *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  *.bin filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  *.safetensors filter=lfs diff=lfs merge=lfs -text
3
+ *.pt filter=lfs diff=lfs merge=lfs -text
4
+ checkpoint-1377/rng_state_0.pth filter=lfs diff=lfs merge=lfs -text
5
+ checkpoint-1377/rng_state_1.pth filter=lfs diff=lfs merge=lfs -text
6
+ checkpoint-1377/rng_state_2.pth filter=lfs diff=lfs merge=lfs -text
7
+ checkpoint-1377/rng_state_3.pth filter=lfs diff=lfs merge=lfs -text
8
+ checkpoint-1377/rng_state_4.pth filter=lfs diff=lfs merge=lfs -text
9
+ checkpoint-1377/rng_state_5.pth filter=lfs diff=lfs merge=lfs -text
10
+ checkpoint-1377/rng_state_6.pth filter=lfs diff=lfs merge=lfs -text
11
+ checkpoint-1377/tokenizer.model filter=lfs diff=lfs merge=lfs -text
12
+ checkpoint-459/rng_state_0.pth filter=lfs diff=lfs merge=lfs -text
13
+ checkpoint-459/rng_state_1.pth filter=lfs diff=lfs merge=lfs -text
14
+ checkpoint-459/rng_state_2.pth filter=lfs diff=lfs merge=lfs -text
15
+ checkpoint-459/rng_state_3.pth filter=lfs diff=lfs merge=lfs -text
16
+ checkpoint-459/rng_state_4.pth filter=lfs diff=lfs merge=lfs -text
17
+ checkpoint-459/rng_state_5.pth filter=lfs diff=lfs merge=lfs -text
18
+ checkpoint-459/rng_state_6.pth filter=lfs diff=lfs merge=lfs -text
19
+ checkpoint-459/tokenizer.model filter=lfs diff=lfs merge=lfs -text
20
+ checkpoint-918/rng_state_0.pth filter=lfs diff=lfs merge=lfs -text
21
+ checkpoint-918/rng_state_1.pth filter=lfs diff=lfs merge=lfs -text
22
+ checkpoint-918/rng_state_2.pth filter=lfs diff=lfs merge=lfs -text
23
+ checkpoint-918/rng_state_3.pth filter=lfs diff=lfs merge=lfs -text
24
+ checkpoint-918/rng_state_4.pth filter=lfs diff=lfs merge=lfs -text
25
+ checkpoint-918/rng_state_5.pth filter=lfs diff=lfs merge=lfs -text
26
+ checkpoint-918/rng_state_6.pth filter=lfs diff=lfs merge=lfs -text
27
+ checkpoint-918/tokenizer.model filter=lfs diff=lfs merge=lfs -text
28
+ tokenizer.model filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,158 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ library_name: peft
4
+ tags:
5
+ - generated_from_trainer
6
+ base_model: openlm-research/open_llama_3b_v2
7
+ model-index:
8
+ - name: outputs/lora-out
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
16
+ <details><summary>See axolotl config</summary>
17
+
18
+ axolotl version: `0.4.0`
19
+ ```yaml
20
+ base_model: openlm-research/open_llama_3b_v2
21
+ model_type: LlamaForCausalLM
22
+ tokenizer_type: LlamaTokenizer
23
+ load_in_8bit: false
24
+ load_in_4bit: true
25
+ strict: false
26
+ push_dataset_to_hub:
27
+ datasets:
28
+ - path: "./raft_oracle_context_alpaca.json"
29
+ type: alpaca
30
+ dataset_prepared_path: ./dataset-pre
31
+ val_set_size: 0.02
32
+ adapter: lora
33
+ lora_model_dir:
34
+ sequence_len: 1024
35
+ sample_packing: true
36
+ lora_r: 8
37
+ lora_alpha: 16
38
+ lora_dropout: 0.0
39
+ lora_target_modules:
40
+ - gate_proj
41
+ - down_proj
42
+ - up_proj
43
+ - q_proj
44
+ - v_proj
45
+ - k_proj
46
+ - o_proj
47
+ lora_fan_in_fan_out:
48
+ wandb_project:
49
+ wandb_entity:
50
+ wandb_watch:
51
+ wandb_name:
52
+ wandb_log_model:
53
+ output_dir: ./outputs/lora-out
54
+ gradient_accumulation_steps: 1
55
+ micro_batch_size: 2
56
+ num_epochs: 4
57
+ optimizer: adamw_bnb_8bit
58
+ torchdistx_path:
59
+ lr_scheduler: cosine
60
+ learning_rate: 0.0002
61
+ train_on_inputs: false
62
+ group_by_length: false
63
+ bf16: false
64
+ fp16: true
65
+ tf32: false
66
+ gradient_checkpointing: true
67
+ early_stopping_patience:
68
+ resume_from_checkpoint:
69
+ local_rank:
70
+ logging_steps: 1
71
+ xformers_attention:
72
+ flash_attention: true
73
+ gptq_groupsize:
74
+ s2_attention:
75
+ gptq_model_v1:
76
+ warmup_steps: 20
77
+ evals_per_epoch: 4
78
+ saves_per_epoch: 1
79
+ debug:
80
+ deepspeed:
81
+ weight_decay: 0.1
82
+ fsdp:
83
+ fsdp_config:
84
+ special_tokens:
85
+ bos_token: "<s>"
86
+ eos_token: "</s>"
87
+ unk_token: "<unk>"
88
+
89
+ ```
90
+
91
+ </details><br>
92
+
93
+ # outputs/lora-out
94
+
95
+ This model is a fine-tuned version of [openlm-research/open_llama_3b_v2](https://huggingface.co/openlm-research/open_llama_3b_v2) on the None dataset.
96
+ It achieves the following results on the evaluation set:
97
+ - Loss: 0.4426
98
+
99
+ ## Model description
100
+
101
+ More information needed
102
+
103
+ ## Intended uses & limitations
104
+
105
+ More information needed
106
+
107
+ ## Training and evaluation data
108
+
109
+ More information needed
110
+
111
+ ## Training procedure
112
+
113
+ ### Training hyperparameters
114
+
115
+ The following hyperparameters were used during training:
116
+ - learning_rate: 0.0002
117
+ - train_batch_size: 2
118
+ - eval_batch_size: 2
119
+ - seed: 42
120
+ - distributed_type: multi-GPU
121
+ - num_devices: 7
122
+ - total_train_batch_size: 14
123
+ - total_eval_batch_size: 14
124
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
125
+ - lr_scheduler_type: cosine
126
+ - lr_scheduler_warmup_steps: 20
127
+ - num_epochs: 4
128
+ - mixed_precision_training: Native AMP
129
+
130
+ ### Training results
131
+
132
+ | Training Loss | Epoch | Step | Validation Loss |
133
+ |:-------------:|:------:|:----:|:---------------:|
134
+ | 1.9628 | 0.0022 | 1 | 1.9150 |
135
+ | 0.5816 | 0.2505 | 115 | 0.6157 |
136
+ | 0.3604 | 0.5011 | 230 | 0.4307 |
137
+ | 0.2598 | 0.7516 | 345 | 0.3558 |
138
+ | 0.2227 | 1.0022 | 460 | 0.3434 |
139
+ | 0.1381 | 1.2266 | 575 | 0.3376 |
140
+ | 0.0718 | 1.4771 | 690 | 0.3372 |
141
+ | 0.0684 | 1.7277 | 805 | 0.3608 |
142
+ | 0.0817 | 1.9782 | 920 | 0.3663 |
143
+ | 0.0315 | 2.2004 | 1035 | 0.3888 |
144
+ | 0.0331 | 2.4510 | 1150 | 0.4003 |
145
+ | 0.0222 | 2.7015 | 1265 | 0.4145 |
146
+ | 0.0222 | 2.9521 | 1380 | 0.4216 |
147
+ | 0.0166 | 3.1743 | 1495 | 0.4330 |
148
+ | 0.017 | 3.4248 | 1610 | 0.4391 |
149
+ | 0.0142 | 3.6754 | 1725 | 0.4426 |
150
+
151
+
152
+ ### Framework versions
153
+
154
+ - PEFT 0.10.0
155
+ - Transformers 4.40.2
156
+ - Pytorch 2.1.2+cu118
157
+ - Datasets 2.19.1
158
+ - Tokenizers 0.19.1
adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "openlm-research/open_llama_3b_v2",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 16,
14
+ "lora_dropout": 0.0,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "q_proj",
24
+ "v_proj",
25
+ "k_proj",
26
+ "up_proj",
27
+ "gate_proj",
28
+ "down_proj",
29
+ "o_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:677a50c1b9d0850d2cec3f7b7f4f48c48b1ee972cb2035101a85db8d424296cb
3
+ size 50982842
checkpoint-1377/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: openlm-research/open_llama_3b_v2
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.10.0
checkpoint-1377/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "openlm-research/open_llama_3b_v2",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 16,
14
+ "lora_dropout": 0.0,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "q_proj",
24
+ "v_proj",
25
+ "k_proj",
26
+ "up_proj",
27
+ "gate_proj",
28
+ "down_proj",
29
+ "o_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
checkpoint-1377/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e64e7265af1602760cb6765df9d12208ad7e4d8228dd48f7994a67b4da975462
3
+ size 50899792
checkpoint-1377/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ac4b5f71f597d712b6e2ca4d8fec319aaff06839dea03ce75d149b4adb39c99b
3
+ size 25871876
checkpoint-1377/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ea5defeb91698ab6360f6216c8fabe695c077c8654d953a8daff86e8cf12ac6f
3
+ size 15728
checkpoint-1377/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2c8cd6242aea8a6a67e50efdbc6675b2331391d7cb99b0f91636f6cebb247fc6
3
+ size 15728
checkpoint-1377/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:79f99cd40889231e537abfb45dcbb6e55838c2e72a30b89341ab0ad583b0b960
3
+ size 15728
checkpoint-1377/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:90417ba680fa5bb09ef8a8ec398b7257d0636eb9c7b2ad515cefe3d7407cde71
3
+ size 15728
checkpoint-1377/rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:499b2fe2efbdc7898fb314f5e08537284a5f372d58390b1752628c101c097fc0
3
+ size 15728
checkpoint-1377/rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:63014041ad8399310e60df2026b42ef3ff4ba8bdfe812a4644440582152f21fd
3
+ size 15728
checkpoint-1377/rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:694faa19a67bf5098b4669d83e2b2d644639b59e4ba1b2574f64019340cde48c
3
+ size 15728
checkpoint-1377/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfd1ed30b1ed2729d9f26cdc448998fb7a2617a21add5df7cc852b5bedc40d45
3
+ size 1064
checkpoint-1377/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
checkpoint-1377/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:91b289e85fa20fd375d8b33dc12f77616f18abc6359804471d1fafcb425fecb8
3
+ size 511574
checkpoint-1377/tokenizer_config.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": true,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ }
30
+ },
31
+ "bos_token": "<s>",
32
+ "clean_up_tokenization_spaces": false,
33
+ "eos_token": "</s>",
34
+ "legacy": true,
35
+ "model_max_length": 2048,
36
+ "pad_token": "</s>",
37
+ "sp_model_kwargs": {},
38
+ "spaces_between_special_tokens": false,
39
+ "tokenizer_class": "LlamaTokenizer",
40
+ "unk_token": "<unk>",
41
+ "use_default_system_prompt": false,
42
+ "use_fast": true
43
+ }
checkpoint-1377/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1377/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:56eeec319c5500d881c83ddf7f3e737b7843c548db9958907577f93d03ba7823
3
+ size 5816
checkpoint-459/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: openlm-research/open_llama_3b_v2
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.10.0
checkpoint-459/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "openlm-research/open_llama_3b_v2",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 16,
14
+ "lora_dropout": 0.0,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "q_proj",
24
+ "v_proj",
25
+ "k_proj",
26
+ "up_proj",
27
+ "gate_proj",
28
+ "down_proj",
29
+ "o_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
checkpoint-459/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:65853739bfa38f24d209091ef89729fc8483f62b9458acd129e27c84ff647381
3
+ size 50899792
checkpoint-459/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:66949e01021ea3c116412bc78bd8416d04b91edc93268b8ec285568996ad86f4
3
+ size 25871876
checkpoint-459/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3ede3a41c76eab8d5a1109b390a56df16ebb33aa97144d7374657806fe7680ec
3
+ size 15728
checkpoint-459/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5e5a3f71bd916448b335fc12b81ee46376136a8b88160f46dc05a2c519f7dc69
3
+ size 15728
checkpoint-459/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1498f85638b156d84ed9814b2ee749b87a840b1cebc2023ed62f199cdf2db62a
3
+ size 15728
checkpoint-459/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5c7e82267f597a2bf81008683b4aea5c1841ac18b6f7d3817788768df2bd57ca
3
+ size 15728
checkpoint-459/rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:881e950a2ccd0819e0af6ba6c8686e05169bc934182acceb756ddbcc66ba79d5
3
+ size 15728
checkpoint-459/rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da7d85a882a0a197e2b4aadcdeca8bd3ab751aff35caf44543574dadb7638446
3
+ size 15728
checkpoint-459/rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0ccc34bb3651a068b5415059e67db3f95a4450f8a810669e910ccbd146669019
3
+ size 15728
checkpoint-459/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8a751b4b1e6d1ebcbd0865f7e06be0ccb8edd80211daf4876d48ed2983b57ef5
3
+ size 1064
checkpoint-459/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
checkpoint-459/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:91b289e85fa20fd375d8b33dc12f77616f18abc6359804471d1fafcb425fecb8
3
+ size 511574
checkpoint-459/tokenizer_config.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": true,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ }
30
+ },
31
+ "bos_token": "<s>",
32
+ "clean_up_tokenization_spaces": false,
33
+ "eos_token": "</s>",
34
+ "legacy": true,
35
+ "model_max_length": 2048,
36
+ "pad_token": "</s>",
37
+ "sp_model_kwargs": {},
38
+ "spaces_between_special_tokens": false,
39
+ "tokenizer_class": "LlamaTokenizer",
40
+ "unk_token": "<unk>",
41
+ "use_default_system_prompt": false,
42
+ "use_fast": true
43
+ }
checkpoint-459/trainer_state.json ADDED
@@ -0,0 +1,3266 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.0,
5
+ "eval_steps": 115,
6
+ "global_step": 459,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.002178649237472767,
13
+ "grad_norm": 0.4049851596355438,
14
+ "learning_rate": 1e-05,
15
+ "loss": 1.9628,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.002178649237472767,
20
+ "eval_loss": 1.915004849433899,
21
+ "eval_runtime": 0.9396,
22
+ "eval_samples_per_second": 181.996,
23
+ "eval_steps_per_second": 13.836,
24
+ "step": 1
25
+ },
26
+ {
27
+ "epoch": 0.004357298474945534,
28
+ "grad_norm": 0.38593971729278564,
29
+ "learning_rate": 2e-05,
30
+ "loss": 2.0388,
31
+ "step": 2
32
+ },
33
+ {
34
+ "epoch": 0.006535947712418301,
35
+ "grad_norm": 0.38570573925971985,
36
+ "learning_rate": 3e-05,
37
+ "loss": 1.932,
38
+ "step": 3
39
+ },
40
+ {
41
+ "epoch": 0.008714596949891068,
42
+ "grad_norm": 0.35365748405456543,
43
+ "learning_rate": 4e-05,
44
+ "loss": 1.866,
45
+ "step": 4
46
+ },
47
+ {
48
+ "epoch": 0.010893246187363835,
49
+ "grad_norm": 0.4407881796360016,
50
+ "learning_rate": 5e-05,
51
+ "loss": 1.9959,
52
+ "step": 5
53
+ },
54
+ {
55
+ "epoch": 0.013071895424836602,
56
+ "grad_norm": 0.3517284095287323,
57
+ "learning_rate": 6e-05,
58
+ "loss": 1.8822,
59
+ "step": 6
60
+ },
61
+ {
62
+ "epoch": 0.015250544662309368,
63
+ "grad_norm": 0.45338165760040283,
64
+ "learning_rate": 7e-05,
65
+ "loss": 1.8933,
66
+ "step": 7
67
+ },
68
+ {
69
+ "epoch": 0.017429193899782137,
70
+ "grad_norm": 0.3475826680660248,
71
+ "learning_rate": 8e-05,
72
+ "loss": 1.8337,
73
+ "step": 8
74
+ },
75
+ {
76
+ "epoch": 0.0196078431372549,
77
+ "grad_norm": 0.4348187744617462,
78
+ "learning_rate": 9e-05,
79
+ "loss": 1.9261,
80
+ "step": 9
81
+ },
82
+ {
83
+ "epoch": 0.02178649237472767,
84
+ "grad_norm": 0.3879510164260864,
85
+ "learning_rate": 0.0001,
86
+ "loss": 1.7648,
87
+ "step": 10
88
+ },
89
+ {
90
+ "epoch": 0.023965141612200435,
91
+ "grad_norm": 0.3244905471801758,
92
+ "learning_rate": 0.00011000000000000002,
93
+ "loss": 1.7833,
94
+ "step": 11
95
+ },
96
+ {
97
+ "epoch": 0.026143790849673203,
98
+ "grad_norm": 0.3566845953464508,
99
+ "learning_rate": 0.00012,
100
+ "loss": 1.786,
101
+ "step": 12
102
+ },
103
+ {
104
+ "epoch": 0.02832244008714597,
105
+ "grad_norm": 0.35482919216156006,
106
+ "learning_rate": 0.00013000000000000002,
107
+ "loss": 1.6593,
108
+ "step": 13
109
+ },
110
+ {
111
+ "epoch": 0.030501089324618737,
112
+ "grad_norm": 0.3647037744522095,
113
+ "learning_rate": 0.00014,
114
+ "loss": 1.696,
115
+ "step": 14
116
+ },
117
+ {
118
+ "epoch": 0.032679738562091505,
119
+ "grad_norm": 0.41642501950263977,
120
+ "learning_rate": 0.00015000000000000001,
121
+ "loss": 1.5964,
122
+ "step": 15
123
+ },
124
+ {
125
+ "epoch": 0.034858387799564274,
126
+ "grad_norm": 0.3616989254951477,
127
+ "learning_rate": 0.00016,
128
+ "loss": 1.7121,
129
+ "step": 16
130
+ },
131
+ {
132
+ "epoch": 0.037037037037037035,
133
+ "grad_norm": 0.39412033557891846,
134
+ "learning_rate": 0.00017,
135
+ "loss": 1.7392,
136
+ "step": 17
137
+ },
138
+ {
139
+ "epoch": 0.0392156862745098,
140
+ "grad_norm": 0.3788229823112488,
141
+ "learning_rate": 0.00018,
142
+ "loss": 1.793,
143
+ "step": 18
144
+ },
145
+ {
146
+ "epoch": 0.04139433551198257,
147
+ "grad_norm": 0.3376384377479553,
148
+ "learning_rate": 0.00019,
149
+ "loss": 1.6145,
150
+ "step": 19
151
+ },
152
+ {
153
+ "epoch": 0.04357298474945534,
154
+ "grad_norm": 0.3674631714820862,
155
+ "learning_rate": 0.0002,
156
+ "loss": 1.6802,
157
+ "step": 20
158
+ },
159
+ {
160
+ "epoch": 0.0457516339869281,
161
+ "grad_norm": 0.406034916639328,
162
+ "learning_rate": 0.00019999985036335823,
163
+ "loss": 1.7272,
164
+ "step": 21
165
+ },
166
+ {
167
+ "epoch": 0.04793028322440087,
168
+ "grad_norm": 0.34544336795806885,
169
+ "learning_rate": 0.00019999940145388063,
170
+ "loss": 1.592,
171
+ "step": 22
172
+ },
173
+ {
174
+ "epoch": 0.05010893246187364,
175
+ "grad_norm": 0.4000962972640991,
176
+ "learning_rate": 0.00019999865327291073,
177
+ "loss": 1.6177,
178
+ "step": 23
179
+ },
180
+ {
181
+ "epoch": 0.05228758169934641,
182
+ "grad_norm": 0.36951783299446106,
183
+ "learning_rate": 0.00019999760582268763,
184
+ "loss": 1.6261,
185
+ "step": 24
186
+ },
187
+ {
188
+ "epoch": 0.054466230936819175,
189
+ "grad_norm": 0.3870888948440552,
190
+ "learning_rate": 0.00019999625910634605,
191
+ "loss": 1.544,
192
+ "step": 25
193
+ },
194
+ {
195
+ "epoch": 0.05664488017429194,
196
+ "grad_norm": 0.4127906560897827,
197
+ "learning_rate": 0.00019999461312791638,
198
+ "loss": 1.5375,
199
+ "step": 26
200
+ },
201
+ {
202
+ "epoch": 0.058823529411764705,
203
+ "grad_norm": 0.43752938508987427,
204
+ "learning_rate": 0.00019999266789232455,
205
+ "loss": 1.4055,
206
+ "step": 27
207
+ },
208
+ {
209
+ "epoch": 0.06100217864923747,
210
+ "grad_norm": 0.44983282685279846,
211
+ "learning_rate": 0.0001999904234053922,
212
+ "loss": 1.5742,
213
+ "step": 28
214
+ },
215
+ {
216
+ "epoch": 0.06318082788671024,
217
+ "grad_norm": 0.4332844614982605,
218
+ "learning_rate": 0.0001999878796738364,
219
+ "loss": 1.5264,
220
+ "step": 29
221
+ },
222
+ {
223
+ "epoch": 0.06535947712418301,
224
+ "grad_norm": 0.4228737950325012,
225
+ "learning_rate": 0.00019998503670526994,
226
+ "loss": 1.4985,
227
+ "step": 30
228
+ },
229
+ {
230
+ "epoch": 0.06753812636165578,
231
+ "grad_norm": 0.4225306808948517,
232
+ "learning_rate": 0.000199981894508201,
233
+ "loss": 1.447,
234
+ "step": 31
235
+ },
236
+ {
237
+ "epoch": 0.06971677559912855,
238
+ "grad_norm": 0.5055080056190491,
239
+ "learning_rate": 0.00019997845309203334,
240
+ "loss": 1.4575,
241
+ "step": 32
242
+ },
243
+ {
244
+ "epoch": 0.0718954248366013,
245
+ "grad_norm": 0.4757756292819977,
246
+ "learning_rate": 0.0001999747124670662,
247
+ "loss": 1.3472,
248
+ "step": 33
249
+ },
250
+ {
251
+ "epoch": 0.07407407407407407,
252
+ "grad_norm": 0.4340977966785431,
253
+ "learning_rate": 0.00019997067264449433,
254
+ "loss": 1.3273,
255
+ "step": 34
256
+ },
257
+ {
258
+ "epoch": 0.07625272331154684,
259
+ "grad_norm": 0.4556865692138672,
260
+ "learning_rate": 0.0001999663336364078,
261
+ "loss": 1.43,
262
+ "step": 35
263
+ },
264
+ {
265
+ "epoch": 0.0784313725490196,
266
+ "grad_norm": 0.5178071856498718,
267
+ "learning_rate": 0.00019996169545579207,
268
+ "loss": 1.3286,
269
+ "step": 36
270
+ },
271
+ {
272
+ "epoch": 0.08061002178649238,
273
+ "grad_norm": 0.5154844522476196,
274
+ "learning_rate": 0.00019995675811652802,
275
+ "loss": 1.2845,
276
+ "step": 37
277
+ },
278
+ {
279
+ "epoch": 0.08278867102396514,
280
+ "grad_norm": 0.5944285988807678,
281
+ "learning_rate": 0.00019995152163339178,
282
+ "loss": 1.4411,
283
+ "step": 38
284
+ },
285
+ {
286
+ "epoch": 0.08496732026143791,
287
+ "grad_norm": 0.5691947340965271,
288
+ "learning_rate": 0.00019994598602205473,
289
+ "loss": 1.3807,
290
+ "step": 39
291
+ },
292
+ {
293
+ "epoch": 0.08714596949891068,
294
+ "grad_norm": 0.575366199016571,
295
+ "learning_rate": 0.00019994015129908346,
296
+ "loss": 1.3347,
297
+ "step": 40
298
+ },
299
+ {
300
+ "epoch": 0.08932461873638345,
301
+ "grad_norm": 0.5233891010284424,
302
+ "learning_rate": 0.00019993401748193978,
303
+ "loss": 1.303,
304
+ "step": 41
305
+ },
306
+ {
307
+ "epoch": 0.0915032679738562,
308
+ "grad_norm": 0.5643051862716675,
309
+ "learning_rate": 0.00019992758458898055,
310
+ "loss": 1.2618,
311
+ "step": 42
312
+ },
313
+ {
314
+ "epoch": 0.09368191721132897,
315
+ "grad_norm": 0.6836549043655396,
316
+ "learning_rate": 0.0001999208526394577,
317
+ "loss": 1.3218,
318
+ "step": 43
319
+ },
320
+ {
321
+ "epoch": 0.09586056644880174,
322
+ "grad_norm": 0.6471132040023804,
323
+ "learning_rate": 0.00019991382165351814,
324
+ "loss": 1.1933,
325
+ "step": 44
326
+ },
327
+ {
328
+ "epoch": 0.09803921568627451,
329
+ "grad_norm": 0.5644765496253967,
330
+ "learning_rate": 0.00019990649165220375,
331
+ "loss": 1.1135,
332
+ "step": 45
333
+ },
334
+ {
335
+ "epoch": 0.10021786492374728,
336
+ "grad_norm": 0.7101904153823853,
337
+ "learning_rate": 0.00019989886265745128,
338
+ "loss": 1.1919,
339
+ "step": 46
340
+ },
341
+ {
342
+ "epoch": 0.10239651416122005,
343
+ "grad_norm": 0.706234872341156,
344
+ "learning_rate": 0.00019989093469209224,
345
+ "loss": 1.1607,
346
+ "step": 47
347
+ },
348
+ {
349
+ "epoch": 0.10457516339869281,
350
+ "grad_norm": 0.6854044795036316,
351
+ "learning_rate": 0.00019988270777985292,
352
+ "loss": 1.1441,
353
+ "step": 48
354
+ },
355
+ {
356
+ "epoch": 0.10675381263616558,
357
+ "grad_norm": 0.6608173251152039,
358
+ "learning_rate": 0.00019987418194535427,
359
+ "loss": 1.0626,
360
+ "step": 49
361
+ },
362
+ {
363
+ "epoch": 0.10893246187363835,
364
+ "grad_norm": 0.7540091276168823,
365
+ "learning_rate": 0.00019986535721411186,
366
+ "loss": 1.1346,
367
+ "step": 50
368
+ },
369
+ {
370
+ "epoch": 0.1111111111111111,
371
+ "grad_norm": 0.783423125743866,
372
+ "learning_rate": 0.00019985623361253572,
373
+ "loss": 1.2105,
374
+ "step": 51
375
+ },
376
+ {
377
+ "epoch": 0.11328976034858387,
378
+ "grad_norm": 0.7029076814651489,
379
+ "learning_rate": 0.00019984681116793038,
380
+ "loss": 0.9689,
381
+ "step": 52
382
+ },
383
+ {
384
+ "epoch": 0.11546840958605664,
385
+ "grad_norm": 0.8416129350662231,
386
+ "learning_rate": 0.00019983708990849468,
387
+ "loss": 1.1176,
388
+ "step": 53
389
+ },
390
+ {
391
+ "epoch": 0.11764705882352941,
392
+ "grad_norm": 0.7312731146812439,
393
+ "learning_rate": 0.00019982706986332175,
394
+ "loss": 1.1695,
395
+ "step": 54
396
+ },
397
+ {
398
+ "epoch": 0.11982570806100218,
399
+ "grad_norm": 0.8590166568756104,
400
+ "learning_rate": 0.00019981675106239895,
401
+ "loss": 1.016,
402
+ "step": 55
403
+ },
404
+ {
405
+ "epoch": 0.12200435729847495,
406
+ "grad_norm": 0.8634907603263855,
407
+ "learning_rate": 0.00019980613353660763,
408
+ "loss": 1.0777,
409
+ "step": 56
410
+ },
411
+ {
412
+ "epoch": 0.12418300653594772,
413
+ "grad_norm": 0.6608163714408875,
414
+ "learning_rate": 0.00019979521731772323,
415
+ "loss": 0.9661,
416
+ "step": 57
417
+ },
418
+ {
419
+ "epoch": 0.12636165577342048,
420
+ "grad_norm": 0.9486388564109802,
421
+ "learning_rate": 0.00019978400243841508,
422
+ "loss": 0.8715,
423
+ "step": 58
424
+ },
425
+ {
426
+ "epoch": 0.12854030501089325,
427
+ "grad_norm": 0.8431762456893921,
428
+ "learning_rate": 0.00019977248893224636,
429
+ "loss": 1.0458,
430
+ "step": 59
431
+ },
432
+ {
433
+ "epoch": 0.13071895424836602,
434
+ "grad_norm": 1.00847589969635,
435
+ "learning_rate": 0.00019976067683367385,
436
+ "loss": 0.9081,
437
+ "step": 60
438
+ },
439
+ {
440
+ "epoch": 0.1328976034858388,
441
+ "grad_norm": 1.3647116422653198,
442
+ "learning_rate": 0.00019974856617804807,
443
+ "loss": 1.0181,
444
+ "step": 61
445
+ },
446
+ {
447
+ "epoch": 0.13507625272331156,
448
+ "grad_norm": 1.2597001791000366,
449
+ "learning_rate": 0.0001997361570016129,
450
+ "loss": 0.9373,
451
+ "step": 62
452
+ },
453
+ {
454
+ "epoch": 0.13725490196078433,
455
+ "grad_norm": 1.238145351409912,
456
+ "learning_rate": 0.00019972344934150577,
457
+ "loss": 0.9464,
458
+ "step": 63
459
+ },
460
+ {
461
+ "epoch": 0.1394335511982571,
462
+ "grad_norm": 1.114610195159912,
463
+ "learning_rate": 0.00019971044323575728,
464
+ "loss": 0.9163,
465
+ "step": 64
466
+ },
467
+ {
468
+ "epoch": 0.14161220043572983,
469
+ "grad_norm": 0.9760491847991943,
470
+ "learning_rate": 0.0001996971387232912,
471
+ "loss": 0.8424,
472
+ "step": 65
473
+ },
474
+ {
475
+ "epoch": 0.1437908496732026,
476
+ "grad_norm": 0.999609649181366,
477
+ "learning_rate": 0.0001996835358439244,
478
+ "loss": 0.8027,
479
+ "step": 66
480
+ },
481
+ {
482
+ "epoch": 0.14596949891067537,
483
+ "grad_norm": 0.9615645408630371,
484
+ "learning_rate": 0.00019966963463836668,
485
+ "loss": 0.9491,
486
+ "step": 67
487
+ },
488
+ {
489
+ "epoch": 0.14814814814814814,
490
+ "grad_norm": 0.9067331552505493,
491
+ "learning_rate": 0.00019965543514822062,
492
+ "loss": 0.9756,
493
+ "step": 68
494
+ },
495
+ {
496
+ "epoch": 0.1503267973856209,
497
+ "grad_norm": 1.0316940546035767,
498
+ "learning_rate": 0.00019964093741598152,
499
+ "loss": 0.7276,
500
+ "step": 69
501
+ },
502
+ {
503
+ "epoch": 0.15250544662309368,
504
+ "grad_norm": 0.7774396538734436,
505
+ "learning_rate": 0.00019962614148503718,
506
+ "loss": 0.8904,
507
+ "step": 70
508
+ },
509
+ {
510
+ "epoch": 0.15468409586056645,
511
+ "grad_norm": 1.0500309467315674,
512
+ "learning_rate": 0.0001996110473996679,
513
+ "loss": 0.8801,
514
+ "step": 71
515
+ },
516
+ {
517
+ "epoch": 0.1568627450980392,
518
+ "grad_norm": 0.8712791800498962,
519
+ "learning_rate": 0.00019959565520504623,
520
+ "loss": 0.992,
521
+ "step": 72
522
+ },
523
+ {
524
+ "epoch": 0.15904139433551198,
525
+ "grad_norm": 1.006437063217163,
526
+ "learning_rate": 0.0001995799649472369,
527
+ "loss": 0.6761,
528
+ "step": 73
529
+ },
530
+ {
531
+ "epoch": 0.16122004357298475,
532
+ "grad_norm": 1.0199809074401855,
533
+ "learning_rate": 0.00019956397667319668,
534
+ "loss": 0.7066,
535
+ "step": 74
536
+ },
537
+ {
538
+ "epoch": 0.16339869281045752,
539
+ "grad_norm": 1.2605611085891724,
540
+ "learning_rate": 0.0001995476904307742,
541
+ "loss": 0.6546,
542
+ "step": 75
543
+ },
544
+ {
545
+ "epoch": 0.1655773420479303,
546
+ "grad_norm": 0.9553707242012024,
547
+ "learning_rate": 0.00019953110626870979,
548
+ "loss": 0.9392,
549
+ "step": 76
550
+ },
551
+ {
552
+ "epoch": 0.16775599128540306,
553
+ "grad_norm": 0.909253716468811,
554
+ "learning_rate": 0.00019951422423663547,
555
+ "loss": 0.8757,
556
+ "step": 77
557
+ },
558
+ {
559
+ "epoch": 0.16993464052287582,
560
+ "grad_norm": 1.007814645767212,
561
+ "learning_rate": 0.00019949704438507459,
562
+ "loss": 0.877,
563
+ "step": 78
564
+ },
565
+ {
566
+ "epoch": 0.1721132897603486,
567
+ "grad_norm": 1.341426968574524,
568
+ "learning_rate": 0.00019947956676544192,
569
+ "loss": 0.8002,
570
+ "step": 79
571
+ },
572
+ {
573
+ "epoch": 0.17429193899782136,
574
+ "grad_norm": 1.153745174407959,
575
+ "learning_rate": 0.00019946179143004325,
576
+ "loss": 0.714,
577
+ "step": 80
578
+ },
579
+ {
580
+ "epoch": 0.17647058823529413,
581
+ "grad_norm": 1.0699673891067505,
582
+ "learning_rate": 0.00019944371843207546,
583
+ "loss": 0.9575,
584
+ "step": 81
585
+ },
586
+ {
587
+ "epoch": 0.1786492374727669,
588
+ "grad_norm": 0.9054269194602966,
589
+ "learning_rate": 0.0001994253478256262,
590
+ "loss": 0.8967,
591
+ "step": 82
592
+ },
593
+ {
594
+ "epoch": 0.18082788671023964,
595
+ "grad_norm": 1.3790533542633057,
596
+ "learning_rate": 0.0001994066796656737,
597
+ "loss": 1.0535,
598
+ "step": 83
599
+ },
600
+ {
601
+ "epoch": 0.1830065359477124,
602
+ "grad_norm": 1.1256961822509766,
603
+ "learning_rate": 0.0001993877140080869,
604
+ "loss": 0.7872,
605
+ "step": 84
606
+ },
607
+ {
608
+ "epoch": 0.18518518518518517,
609
+ "grad_norm": 0.8870573043823242,
610
+ "learning_rate": 0.0001993684509096249,
611
+ "loss": 0.9137,
612
+ "step": 85
613
+ },
614
+ {
615
+ "epoch": 0.18736383442265794,
616
+ "grad_norm": 1.1747201681137085,
617
+ "learning_rate": 0.000199348890427937,
618
+ "loss": 0.779,
619
+ "step": 86
620
+ },
621
+ {
622
+ "epoch": 0.1895424836601307,
623
+ "grad_norm": 0.8280813694000244,
624
+ "learning_rate": 0.00019932903262156245,
625
+ "loss": 0.8289,
626
+ "step": 87
627
+ },
628
+ {
629
+ "epoch": 0.19172113289760348,
630
+ "grad_norm": 0.984609842300415,
631
+ "learning_rate": 0.00019930887754993044,
632
+ "loss": 0.8238,
633
+ "step": 88
634
+ },
635
+ {
636
+ "epoch": 0.19389978213507625,
637
+ "grad_norm": 1.030261516571045,
638
+ "learning_rate": 0.00019928842527335968,
639
+ "loss": 0.7061,
640
+ "step": 89
641
+ },
642
+ {
643
+ "epoch": 0.19607843137254902,
644
+ "grad_norm": 0.8822032809257507,
645
+ "learning_rate": 0.00019926767585305835,
646
+ "loss": 0.8622,
647
+ "step": 90
648
+ },
649
+ {
650
+ "epoch": 0.19825708061002179,
651
+ "grad_norm": 0.996427059173584,
652
+ "learning_rate": 0.00019924662935112393,
653
+ "loss": 0.5348,
654
+ "step": 91
655
+ },
656
+ {
657
+ "epoch": 0.20043572984749455,
658
+ "grad_norm": 1.0308480262756348,
659
+ "learning_rate": 0.000199225285830543,
660
+ "loss": 0.8325,
661
+ "step": 92
662
+ },
663
+ {
664
+ "epoch": 0.20261437908496732,
665
+ "grad_norm": 0.8959431648254395,
666
+ "learning_rate": 0.000199203645355191,
667
+ "loss": 0.6136,
668
+ "step": 93
669
+ },
670
+ {
671
+ "epoch": 0.2047930283224401,
672
+ "grad_norm": 0.8773916363716125,
673
+ "learning_rate": 0.00019918170798983211,
674
+ "loss": 0.577,
675
+ "step": 94
676
+ },
677
+ {
678
+ "epoch": 0.20697167755991286,
679
+ "grad_norm": 1.091194748878479,
680
+ "learning_rate": 0.00019915947380011898,
681
+ "loss": 0.7751,
682
+ "step": 95
683
+ },
684
+ {
685
+ "epoch": 0.20915032679738563,
686
+ "grad_norm": 0.8473864197731018,
687
+ "learning_rate": 0.00019913694285259256,
688
+ "loss": 0.5831,
689
+ "step": 96
690
+ },
691
+ {
692
+ "epoch": 0.2113289760348584,
693
+ "grad_norm": 0.801262378692627,
694
+ "learning_rate": 0.00019911411521468205,
695
+ "loss": 0.6089,
696
+ "step": 97
697
+ },
698
+ {
699
+ "epoch": 0.21350762527233116,
700
+ "grad_norm": 0.9437965154647827,
701
+ "learning_rate": 0.00019909099095470444,
702
+ "loss": 0.7343,
703
+ "step": 98
704
+ },
705
+ {
706
+ "epoch": 0.21568627450980393,
707
+ "grad_norm": 1.1255544424057007,
708
+ "learning_rate": 0.00019906757014186442,
709
+ "loss": 0.6728,
710
+ "step": 99
711
+ },
712
+ {
713
+ "epoch": 0.2178649237472767,
714
+ "grad_norm": 0.930216372013092,
715
+ "learning_rate": 0.00019904385284625424,
716
+ "loss": 0.5675,
717
+ "step": 100
718
+ },
719
+ {
720
+ "epoch": 0.22004357298474944,
721
+ "grad_norm": 0.8021939396858215,
722
+ "learning_rate": 0.00019901983913885344,
723
+ "loss": 0.4423,
724
+ "step": 101
725
+ },
726
+ {
727
+ "epoch": 0.2222222222222222,
728
+ "grad_norm": 1.5028183460235596,
729
+ "learning_rate": 0.00019899552909152866,
730
+ "loss": 0.9797,
731
+ "step": 102
732
+ },
733
+ {
734
+ "epoch": 0.22440087145969498,
735
+ "grad_norm": 0.7115923762321472,
736
+ "learning_rate": 0.00019897092277703333,
737
+ "loss": 0.4128,
738
+ "step": 103
739
+ },
740
+ {
741
+ "epoch": 0.22657952069716775,
742
+ "grad_norm": 0.9592722058296204,
743
+ "learning_rate": 0.00019894602026900758,
744
+ "loss": 0.8714,
745
+ "step": 104
746
+ },
747
+ {
748
+ "epoch": 0.22875816993464052,
749
+ "grad_norm": 0.8745520114898682,
750
+ "learning_rate": 0.000198920821641978,
751
+ "loss": 0.5991,
752
+ "step": 105
753
+ },
754
+ {
755
+ "epoch": 0.23093681917211328,
756
+ "grad_norm": 0.7649117708206177,
757
+ "learning_rate": 0.00019889532697135734,
758
+ "loss": 0.5501,
759
+ "step": 106
760
+ },
761
+ {
762
+ "epoch": 0.23311546840958605,
763
+ "grad_norm": 1.1097913980484009,
764
+ "learning_rate": 0.0001988695363334443,
765
+ "loss": 0.5863,
766
+ "step": 107
767
+ },
768
+ {
769
+ "epoch": 0.23529411764705882,
770
+ "grad_norm": 0.9224969148635864,
771
+ "learning_rate": 0.00019884344980542338,
772
+ "loss": 0.5883,
773
+ "step": 108
774
+ },
775
+ {
776
+ "epoch": 0.2374727668845316,
777
+ "grad_norm": 0.7770025134086609,
778
+ "learning_rate": 0.00019881706746536462,
779
+ "loss": 0.8375,
780
+ "step": 109
781
+ },
782
+ {
783
+ "epoch": 0.23965141612200436,
784
+ "grad_norm": 0.8830885887145996,
785
+ "learning_rate": 0.00019879038939222329,
786
+ "loss": 0.6464,
787
+ "step": 110
788
+ },
789
+ {
790
+ "epoch": 0.24183006535947713,
791
+ "grad_norm": 0.8932918310165405,
792
+ "learning_rate": 0.00019876341566583977,
793
+ "loss": 0.4851,
794
+ "step": 111
795
+ },
796
+ {
797
+ "epoch": 0.2440087145969499,
798
+ "grad_norm": 0.8250621557235718,
799
+ "learning_rate": 0.0001987361463669392,
800
+ "loss": 0.5658,
801
+ "step": 112
802
+ },
803
+ {
804
+ "epoch": 0.24618736383442266,
805
+ "grad_norm": 0.9288647174835205,
806
+ "learning_rate": 0.00019870858157713123,
807
+ "loss": 0.5441,
808
+ "step": 113
809
+ },
810
+ {
811
+ "epoch": 0.24836601307189543,
812
+ "grad_norm": 0.8258922100067139,
813
+ "learning_rate": 0.00019868072137891002,
814
+ "loss": 0.764,
815
+ "step": 114
816
+ },
817
+ {
818
+ "epoch": 0.25054466230936817,
819
+ "grad_norm": 0.8087350726127625,
820
+ "learning_rate": 0.00019865256585565363,
821
+ "loss": 0.5816,
822
+ "step": 115
823
+ },
824
+ {
825
+ "epoch": 0.25054466230936817,
826
+ "eval_loss": 0.6156808733940125,
827
+ "eval_runtime": 0.937,
828
+ "eval_samples_per_second": 182.501,
829
+ "eval_steps_per_second": 13.874,
830
+ "step": 115
831
+ },
832
+ {
833
+ "epoch": 0.25272331154684097,
834
+ "grad_norm": 1.0198040008544922,
835
+ "learning_rate": 0.00019862411509162406,
836
+ "loss": 0.9471,
837
+ "step": 116
838
+ },
839
+ {
840
+ "epoch": 0.2549019607843137,
841
+ "grad_norm": 0.8376523852348328,
842
+ "learning_rate": 0.00019859536917196687,
843
+ "loss": 0.6166,
844
+ "step": 117
845
+ },
846
+ {
847
+ "epoch": 0.2570806100217865,
848
+ "grad_norm": 0.8766109347343445,
849
+ "learning_rate": 0.0001985663281827108,
850
+ "loss": 0.6737,
851
+ "step": 118
852
+ },
853
+ {
854
+ "epoch": 0.25925925925925924,
855
+ "grad_norm": 1.072192668914795,
856
+ "learning_rate": 0.00019853699221076792,
857
+ "loss": 0.6403,
858
+ "step": 119
859
+ },
860
+ {
861
+ "epoch": 0.26143790849673204,
862
+ "grad_norm": 0.8205565214157104,
863
+ "learning_rate": 0.00019850736134393286,
864
+ "loss": 0.4247,
865
+ "step": 120
866
+ },
867
+ {
868
+ "epoch": 0.2636165577342048,
869
+ "grad_norm": 1.0622146129608154,
870
+ "learning_rate": 0.00019847743567088293,
871
+ "loss": 0.6497,
872
+ "step": 121
873
+ },
874
+ {
875
+ "epoch": 0.2657952069716776,
876
+ "grad_norm": 0.8463292717933655,
877
+ "learning_rate": 0.00019844721528117766,
878
+ "loss": 0.6587,
879
+ "step": 122
880
+ },
881
+ {
882
+ "epoch": 0.2679738562091503,
883
+ "grad_norm": 0.9597845673561096,
884
+ "learning_rate": 0.0001984167002652586,
885
+ "loss": 0.4752,
886
+ "step": 123
887
+ },
888
+ {
889
+ "epoch": 0.2701525054466231,
890
+ "grad_norm": 0.8975586295127869,
891
+ "learning_rate": 0.00019838589071444903,
892
+ "loss": 0.7978,
893
+ "step": 124
894
+ },
895
+ {
896
+ "epoch": 0.27233115468409586,
897
+ "grad_norm": 0.8363540768623352,
898
+ "learning_rate": 0.00019835478672095374,
899
+ "loss": 0.7359,
900
+ "step": 125
901
+ },
902
+ {
903
+ "epoch": 0.27450980392156865,
904
+ "grad_norm": 1.0208615064620972,
905
+ "learning_rate": 0.00019832338837785863,
906
+ "loss": 0.518,
907
+ "step": 126
908
+ },
909
+ {
910
+ "epoch": 0.2766884531590414,
911
+ "grad_norm": 1.14145028591156,
912
+ "learning_rate": 0.0001982916957791306,
913
+ "loss": 0.7642,
914
+ "step": 127
915
+ },
916
+ {
917
+ "epoch": 0.2788671023965142,
918
+ "grad_norm": 0.9274200797080994,
919
+ "learning_rate": 0.00019825970901961705,
920
+ "loss": 0.5288,
921
+ "step": 128
922
+ },
923
+ {
924
+ "epoch": 0.28104575163398693,
925
+ "grad_norm": 0.8783562779426575,
926
+ "learning_rate": 0.0001982274281950459,
927
+ "loss": 0.5958,
928
+ "step": 129
929
+ },
930
+ {
931
+ "epoch": 0.28322440087145967,
932
+ "grad_norm": 0.9028067588806152,
933
+ "learning_rate": 0.000198194853402025,
934
+ "loss": 0.6075,
935
+ "step": 130
936
+ },
937
+ {
938
+ "epoch": 0.28540305010893247,
939
+ "grad_norm": 0.9846379160881042,
940
+ "learning_rate": 0.00019816198473804198,
941
+ "loss": 0.8254,
942
+ "step": 131
943
+ },
944
+ {
945
+ "epoch": 0.2875816993464052,
946
+ "grad_norm": 0.9409753680229187,
947
+ "learning_rate": 0.00019812882230146398,
948
+ "loss": 0.704,
949
+ "step": 132
950
+ },
951
+ {
952
+ "epoch": 0.289760348583878,
953
+ "grad_norm": 0.8969582915306091,
954
+ "learning_rate": 0.00019809536619153732,
955
+ "loss": 0.6107,
956
+ "step": 133
957
+ },
958
+ {
959
+ "epoch": 0.29193899782135074,
960
+ "grad_norm": 0.7812852263450623,
961
+ "learning_rate": 0.00019806161650838723,
962
+ "loss": 0.5671,
963
+ "step": 134
964
+ },
965
+ {
966
+ "epoch": 0.29411764705882354,
967
+ "grad_norm": 0.8860548734664917,
968
+ "learning_rate": 0.00019802757335301741,
969
+ "loss": 0.5248,
970
+ "step": 135
971
+ },
972
+ {
973
+ "epoch": 0.2962962962962963,
974
+ "grad_norm": 0.8217918276786804,
975
+ "learning_rate": 0.00019799323682731,
976
+ "loss": 0.4935,
977
+ "step": 136
978
+ },
979
+ {
980
+ "epoch": 0.2984749455337691,
981
+ "grad_norm": 0.7621735334396362,
982
+ "learning_rate": 0.00019795860703402505,
983
+ "loss": 0.5984,
984
+ "step": 137
985
+ },
986
+ {
987
+ "epoch": 0.3006535947712418,
988
+ "grad_norm": 0.9418565630912781,
989
+ "learning_rate": 0.00019792368407680025,
990
+ "loss": 0.558,
991
+ "step": 138
992
+ },
993
+ {
994
+ "epoch": 0.3028322440087146,
995
+ "grad_norm": 0.819114625453949,
996
+ "learning_rate": 0.00019788846806015066,
997
+ "loss": 0.3791,
998
+ "step": 139
999
+ },
1000
+ {
1001
+ "epoch": 0.30501089324618735,
1002
+ "grad_norm": 0.9072156548500061,
1003
+ "learning_rate": 0.00019785295908946848,
1004
+ "loss": 0.4462,
1005
+ "step": 140
1006
+ },
1007
+ {
1008
+ "epoch": 0.30718954248366015,
1009
+ "grad_norm": 0.8303220868110657,
1010
+ "learning_rate": 0.00019781715727102252,
1011
+ "loss": 0.4959,
1012
+ "step": 141
1013
+ },
1014
+ {
1015
+ "epoch": 0.3093681917211329,
1016
+ "grad_norm": 0.8586477041244507,
1017
+ "learning_rate": 0.00019778106271195806,
1018
+ "loss": 0.4701,
1019
+ "step": 142
1020
+ },
1021
+ {
1022
+ "epoch": 0.3115468409586057,
1023
+ "grad_norm": 0.7374873757362366,
1024
+ "learning_rate": 0.00019774467552029646,
1025
+ "loss": 0.407,
1026
+ "step": 143
1027
+ },
1028
+ {
1029
+ "epoch": 0.3137254901960784,
1030
+ "grad_norm": 1.1180788278579712,
1031
+ "learning_rate": 0.00019770799580493494,
1032
+ "loss": 0.6304,
1033
+ "step": 144
1034
+ },
1035
+ {
1036
+ "epoch": 0.3159041394335512,
1037
+ "grad_norm": 0.9823700189590454,
1038
+ "learning_rate": 0.000197671023675646,
1039
+ "loss": 0.5079,
1040
+ "step": 145
1041
+ },
1042
+ {
1043
+ "epoch": 0.31808278867102396,
1044
+ "grad_norm": 0.8474340438842773,
1045
+ "learning_rate": 0.00019763375924307735,
1046
+ "loss": 0.5708,
1047
+ "step": 146
1048
+ },
1049
+ {
1050
+ "epoch": 0.3202614379084967,
1051
+ "grad_norm": 0.9172300100326538,
1052
+ "learning_rate": 0.00019759620261875155,
1053
+ "loss": 0.418,
1054
+ "step": 147
1055
+ },
1056
+ {
1057
+ "epoch": 0.3224400871459695,
1058
+ "grad_norm": 0.7413074374198914,
1059
+ "learning_rate": 0.0001975583539150655,
1060
+ "loss": 0.4531,
1061
+ "step": 148
1062
+ },
1063
+ {
1064
+ "epoch": 0.32461873638344224,
1065
+ "grad_norm": 0.7417133450508118,
1066
+ "learning_rate": 0.00019752021324529023,
1067
+ "loss": 0.5158,
1068
+ "step": 149
1069
+ },
1070
+ {
1071
+ "epoch": 0.32679738562091504,
1072
+ "grad_norm": 0.774067223072052,
1073
+ "learning_rate": 0.00019748178072357065,
1074
+ "loss": 0.5995,
1075
+ "step": 150
1076
+ },
1077
+ {
1078
+ "epoch": 0.3289760348583878,
1079
+ "grad_norm": 0.9123216867446899,
1080
+ "learning_rate": 0.00019744305646492497,
1081
+ "loss": 0.6477,
1082
+ "step": 151
1083
+ },
1084
+ {
1085
+ "epoch": 0.3311546840958606,
1086
+ "grad_norm": 0.8347046375274658,
1087
+ "learning_rate": 0.00019740404058524457,
1088
+ "loss": 0.6527,
1089
+ "step": 152
1090
+ },
1091
+ {
1092
+ "epoch": 0.3333333333333333,
1093
+ "grad_norm": 0.9968402981758118,
1094
+ "learning_rate": 0.00019736473320129352,
1095
+ "loss": 0.5282,
1096
+ "step": 153
1097
+ },
1098
+ {
1099
+ "epoch": 0.3355119825708061,
1100
+ "grad_norm": 0.7431806921958923,
1101
+ "learning_rate": 0.00019732513443070836,
1102
+ "loss": 0.5553,
1103
+ "step": 154
1104
+ },
1105
+ {
1106
+ "epoch": 0.33769063180827885,
1107
+ "grad_norm": 0.9280023574829102,
1108
+ "learning_rate": 0.0001972852443919976,
1109
+ "loss": 0.7504,
1110
+ "step": 155
1111
+ },
1112
+ {
1113
+ "epoch": 0.33986928104575165,
1114
+ "grad_norm": 0.9563156366348267,
1115
+ "learning_rate": 0.00019724506320454153,
1116
+ "loss": 0.4566,
1117
+ "step": 156
1118
+ },
1119
+ {
1120
+ "epoch": 0.3420479302832244,
1121
+ "grad_norm": 0.744659960269928,
1122
+ "learning_rate": 0.00019720459098859165,
1123
+ "loss": 0.5929,
1124
+ "step": 157
1125
+ },
1126
+ {
1127
+ "epoch": 0.3442265795206972,
1128
+ "grad_norm": 0.8504654765129089,
1129
+ "learning_rate": 0.0001971638278652705,
1130
+ "loss": 0.5152,
1131
+ "step": 158
1132
+ },
1133
+ {
1134
+ "epoch": 0.3464052287581699,
1135
+ "grad_norm": 0.9335165023803711,
1136
+ "learning_rate": 0.0001971227739565712,
1137
+ "loss": 0.5115,
1138
+ "step": 159
1139
+ },
1140
+ {
1141
+ "epoch": 0.3485838779956427,
1142
+ "grad_norm": 1.0398534536361694,
1143
+ "learning_rate": 0.0001970814293853572,
1144
+ "loss": 0.4626,
1145
+ "step": 160
1146
+ },
1147
+ {
1148
+ "epoch": 0.35076252723311546,
1149
+ "grad_norm": 0.7855281233787537,
1150
+ "learning_rate": 0.0001970397942753617,
1151
+ "loss": 0.4245,
1152
+ "step": 161
1153
+ },
1154
+ {
1155
+ "epoch": 0.35294117647058826,
1156
+ "grad_norm": 0.7897714972496033,
1157
+ "learning_rate": 0.00019699786875118747,
1158
+ "loss": 0.5555,
1159
+ "step": 162
1160
+ },
1161
+ {
1162
+ "epoch": 0.355119825708061,
1163
+ "grad_norm": 0.8648003935813904,
1164
+ "learning_rate": 0.0001969556529383064,
1165
+ "loss": 0.5558,
1166
+ "step": 163
1167
+ },
1168
+ {
1169
+ "epoch": 0.3572984749455338,
1170
+ "grad_norm": 1.0440359115600586,
1171
+ "learning_rate": 0.00019691314696305913,
1172
+ "loss": 0.4879,
1173
+ "step": 164
1174
+ },
1175
+ {
1176
+ "epoch": 0.35947712418300654,
1177
+ "grad_norm": 0.8991299867630005,
1178
+ "learning_rate": 0.00019687035095265475,
1179
+ "loss": 0.4131,
1180
+ "step": 165
1181
+ },
1182
+ {
1183
+ "epoch": 0.3616557734204793,
1184
+ "grad_norm": 1.070555329322815,
1185
+ "learning_rate": 0.00019682726503517017,
1186
+ "loss": 0.4959,
1187
+ "step": 166
1188
+ },
1189
+ {
1190
+ "epoch": 0.3638344226579521,
1191
+ "grad_norm": 0.751699686050415,
1192
+ "learning_rate": 0.00019678388933955015,
1193
+ "loss": 0.4098,
1194
+ "step": 167
1195
+ },
1196
+ {
1197
+ "epoch": 0.3660130718954248,
1198
+ "grad_norm": 0.7820857763290405,
1199
+ "learning_rate": 0.00019674022399560648,
1200
+ "loss": 0.4611,
1201
+ "step": 168
1202
+ },
1203
+ {
1204
+ "epoch": 0.3681917211328976,
1205
+ "grad_norm": 0.7827489376068115,
1206
+ "learning_rate": 0.00019669626913401792,
1207
+ "loss": 0.3593,
1208
+ "step": 169
1209
+ },
1210
+ {
1211
+ "epoch": 0.37037037037037035,
1212
+ "grad_norm": 0.8705342411994934,
1213
+ "learning_rate": 0.00019665202488632956,
1214
+ "loss": 0.4037,
1215
+ "step": 170
1216
+ },
1217
+ {
1218
+ "epoch": 0.37254901960784315,
1219
+ "grad_norm": 0.9181383848190308,
1220
+ "learning_rate": 0.00019660749138495268,
1221
+ "loss": 0.5621,
1222
+ "step": 171
1223
+ },
1224
+ {
1225
+ "epoch": 0.3747276688453159,
1226
+ "grad_norm": 0.7258014678955078,
1227
+ "learning_rate": 0.0001965626687631641,
1228
+ "loss": 0.3909,
1229
+ "step": 172
1230
+ },
1231
+ {
1232
+ "epoch": 0.3769063180827887,
1233
+ "grad_norm": 0.7386276721954346,
1234
+ "learning_rate": 0.00019651755715510602,
1235
+ "loss": 0.5974,
1236
+ "step": 173
1237
+ },
1238
+ {
1239
+ "epoch": 0.3790849673202614,
1240
+ "grad_norm": 0.7849751710891724,
1241
+ "learning_rate": 0.00019647215669578536,
1242
+ "loss": 0.4947,
1243
+ "step": 174
1244
+ },
1245
+ {
1246
+ "epoch": 0.3812636165577342,
1247
+ "grad_norm": 0.7632936239242554,
1248
+ "learning_rate": 0.00019642646752107362,
1249
+ "loss": 0.4886,
1250
+ "step": 175
1251
+ },
1252
+ {
1253
+ "epoch": 0.38344226579520696,
1254
+ "grad_norm": 0.8370786309242249,
1255
+ "learning_rate": 0.00019638048976770628,
1256
+ "loss": 0.4741,
1257
+ "step": 176
1258
+ },
1259
+ {
1260
+ "epoch": 0.38562091503267976,
1261
+ "grad_norm": 0.8441713452339172,
1262
+ "learning_rate": 0.00019633422357328239,
1263
+ "loss": 0.4939,
1264
+ "step": 177
1265
+ },
1266
+ {
1267
+ "epoch": 0.3877995642701525,
1268
+ "grad_norm": 0.7680661082267761,
1269
+ "learning_rate": 0.00019628766907626446,
1270
+ "loss": 0.5976,
1271
+ "step": 178
1272
+ },
1273
+ {
1274
+ "epoch": 0.3899782135076253,
1275
+ "grad_norm": 0.8030869364738464,
1276
+ "learning_rate": 0.00019624082641597754,
1277
+ "loss": 0.4914,
1278
+ "step": 179
1279
+ },
1280
+ {
1281
+ "epoch": 0.39215686274509803,
1282
+ "grad_norm": 0.8066624402999878,
1283
+ "learning_rate": 0.00019619369573260924,
1284
+ "loss": 0.4982,
1285
+ "step": 180
1286
+ },
1287
+ {
1288
+ "epoch": 0.39433551198257083,
1289
+ "grad_norm": 0.7550255060195923,
1290
+ "learning_rate": 0.00019614627716720912,
1291
+ "loss": 0.3796,
1292
+ "step": 181
1293
+ },
1294
+ {
1295
+ "epoch": 0.39651416122004357,
1296
+ "grad_norm": 0.761080265045166,
1297
+ "learning_rate": 0.00019609857086168823,
1298
+ "loss": 0.4118,
1299
+ "step": 182
1300
+ },
1301
+ {
1302
+ "epoch": 0.39869281045751637,
1303
+ "grad_norm": 1.061673641204834,
1304
+ "learning_rate": 0.00019605057695881885,
1305
+ "loss": 0.4461,
1306
+ "step": 183
1307
+ },
1308
+ {
1309
+ "epoch": 0.4008714596949891,
1310
+ "grad_norm": 0.8266555070877075,
1311
+ "learning_rate": 0.00019600229560223388,
1312
+ "loss": 0.4915,
1313
+ "step": 184
1314
+ },
1315
+ {
1316
+ "epoch": 0.40305010893246185,
1317
+ "grad_norm": 0.769981861114502,
1318
+ "learning_rate": 0.00019595372693642654,
1319
+ "loss": 0.3993,
1320
+ "step": 185
1321
+ },
1322
+ {
1323
+ "epoch": 0.40522875816993464,
1324
+ "grad_norm": 0.8316985368728638,
1325
+ "learning_rate": 0.00019590487110674983,
1326
+ "loss": 0.598,
1327
+ "step": 186
1328
+ },
1329
+ {
1330
+ "epoch": 0.4074074074074074,
1331
+ "grad_norm": 0.7869564890861511,
1332
+ "learning_rate": 0.00019585572825941627,
1333
+ "loss": 0.5088,
1334
+ "step": 187
1335
+ },
1336
+ {
1337
+ "epoch": 0.4095860566448802,
1338
+ "grad_norm": 0.7254141569137573,
1339
+ "learning_rate": 0.0001958062985414972,
1340
+ "loss": 0.3948,
1341
+ "step": 188
1342
+ },
1343
+ {
1344
+ "epoch": 0.4117647058823529,
1345
+ "grad_norm": 0.7505261898040771,
1346
+ "learning_rate": 0.00019575658210092259,
1347
+ "loss": 0.3883,
1348
+ "step": 189
1349
+ },
1350
+ {
1351
+ "epoch": 0.4139433551198257,
1352
+ "grad_norm": 0.7498146891593933,
1353
+ "learning_rate": 0.00019570657908648048,
1354
+ "loss": 0.4072,
1355
+ "step": 190
1356
+ },
1357
+ {
1358
+ "epoch": 0.41612200435729846,
1359
+ "grad_norm": 0.9777516722679138,
1360
+ "learning_rate": 0.00019565628964781647,
1361
+ "loss": 0.4711,
1362
+ "step": 191
1363
+ },
1364
+ {
1365
+ "epoch": 0.41830065359477125,
1366
+ "grad_norm": 0.719313383102417,
1367
+ "learning_rate": 0.0001956057139354335,
1368
+ "loss": 0.2645,
1369
+ "step": 192
1370
+ },
1371
+ {
1372
+ "epoch": 0.420479302832244,
1373
+ "grad_norm": 0.826934814453125,
1374
+ "learning_rate": 0.0001955548521006911,
1375
+ "loss": 0.4608,
1376
+ "step": 193
1377
+ },
1378
+ {
1379
+ "epoch": 0.4226579520697168,
1380
+ "grad_norm": 0.7773908376693726,
1381
+ "learning_rate": 0.0001955037042958052,
1382
+ "loss": 0.6364,
1383
+ "step": 194
1384
+ },
1385
+ {
1386
+ "epoch": 0.42483660130718953,
1387
+ "grad_norm": 0.8829189538955688,
1388
+ "learning_rate": 0.00019545227067384747,
1389
+ "loss": 0.5166,
1390
+ "step": 195
1391
+ },
1392
+ {
1393
+ "epoch": 0.42701525054466233,
1394
+ "grad_norm": 0.7444214820861816,
1395
+ "learning_rate": 0.00019540055138874505,
1396
+ "loss": 0.4784,
1397
+ "step": 196
1398
+ },
1399
+ {
1400
+ "epoch": 0.42919389978213507,
1401
+ "grad_norm": 0.7535512447357178,
1402
+ "learning_rate": 0.0001953485465952799,
1403
+ "loss": 0.328,
1404
+ "step": 197
1405
+ },
1406
+ {
1407
+ "epoch": 0.43137254901960786,
1408
+ "grad_norm": 0.867964506149292,
1409
+ "learning_rate": 0.00019529625644908847,
1410
+ "loss": 0.4954,
1411
+ "step": 198
1412
+ },
1413
+ {
1414
+ "epoch": 0.4335511982570806,
1415
+ "grad_norm": 0.8096396923065186,
1416
+ "learning_rate": 0.00019524368110666122,
1417
+ "loss": 0.409,
1418
+ "step": 199
1419
+ },
1420
+ {
1421
+ "epoch": 0.4357298474945534,
1422
+ "grad_norm": 0.6851803064346313,
1423
+ "learning_rate": 0.0001951908207253421,
1424
+ "loss": 0.3642,
1425
+ "step": 200
1426
+ },
1427
+ {
1428
+ "epoch": 0.43790849673202614,
1429
+ "grad_norm": 1.0261396169662476,
1430
+ "learning_rate": 0.00019513767546332813,
1431
+ "loss": 0.5437,
1432
+ "step": 201
1433
+ },
1434
+ {
1435
+ "epoch": 0.4400871459694989,
1436
+ "grad_norm": 0.6751096248626709,
1437
+ "learning_rate": 0.00019508424547966884,
1438
+ "loss": 0.3054,
1439
+ "step": 202
1440
+ },
1441
+ {
1442
+ "epoch": 0.4422657952069717,
1443
+ "grad_norm": 0.9070213437080383,
1444
+ "learning_rate": 0.00019503053093426593,
1445
+ "loss": 0.5467,
1446
+ "step": 203
1447
+ },
1448
+ {
1449
+ "epoch": 0.4444444444444444,
1450
+ "grad_norm": 0.7909525632858276,
1451
+ "learning_rate": 0.00019497653198787264,
1452
+ "loss": 0.4506,
1453
+ "step": 204
1454
+ },
1455
+ {
1456
+ "epoch": 0.4466230936819172,
1457
+ "grad_norm": 0.8636406064033508,
1458
+ "learning_rate": 0.00019492224880209344,
1459
+ "loss": 0.4917,
1460
+ "step": 205
1461
+ },
1462
+ {
1463
+ "epoch": 0.44880174291938996,
1464
+ "grad_norm": 0.8827958106994629,
1465
+ "learning_rate": 0.00019486768153938338,
1466
+ "loss": 0.6783,
1467
+ "step": 206
1468
+ },
1469
+ {
1470
+ "epoch": 0.45098039215686275,
1471
+ "grad_norm": 0.8108576536178589,
1472
+ "learning_rate": 0.00019481283036304768,
1473
+ "loss": 0.5415,
1474
+ "step": 207
1475
+ },
1476
+ {
1477
+ "epoch": 0.4531590413943355,
1478
+ "grad_norm": 0.700524091720581,
1479
+ "learning_rate": 0.0001947576954372413,
1480
+ "loss": 0.2578,
1481
+ "step": 208
1482
+ },
1483
+ {
1484
+ "epoch": 0.4553376906318083,
1485
+ "grad_norm": 0.6894106268882751,
1486
+ "learning_rate": 0.00019470227692696833,
1487
+ "loss": 0.4008,
1488
+ "step": 209
1489
+ },
1490
+ {
1491
+ "epoch": 0.45751633986928103,
1492
+ "grad_norm": 0.762399435043335,
1493
+ "learning_rate": 0.00019464657499808152,
1494
+ "loss": 0.448,
1495
+ "step": 210
1496
+ },
1497
+ {
1498
+ "epoch": 0.4596949891067538,
1499
+ "grad_norm": 0.7530399560928345,
1500
+ "learning_rate": 0.00019459058981728192,
1501
+ "loss": 0.4793,
1502
+ "step": 211
1503
+ },
1504
+ {
1505
+ "epoch": 0.46187363834422657,
1506
+ "grad_norm": 0.8698046803474426,
1507
+ "learning_rate": 0.0001945343215521182,
1508
+ "loss": 0.5627,
1509
+ "step": 212
1510
+ },
1511
+ {
1512
+ "epoch": 0.46405228758169936,
1513
+ "grad_norm": 0.9562462568283081,
1514
+ "learning_rate": 0.00019447777037098622,
1515
+ "loss": 0.6461,
1516
+ "step": 213
1517
+ },
1518
+ {
1519
+ "epoch": 0.4662309368191721,
1520
+ "grad_norm": 0.7317548990249634,
1521
+ "learning_rate": 0.0001944209364431286,
1522
+ "loss": 0.2913,
1523
+ "step": 214
1524
+ },
1525
+ {
1526
+ "epoch": 0.4684095860566449,
1527
+ "grad_norm": 0.8016018271446228,
1528
+ "learning_rate": 0.00019436381993863405,
1529
+ "loss": 0.4218,
1530
+ "step": 215
1531
+ },
1532
+ {
1533
+ "epoch": 0.47058823529411764,
1534
+ "grad_norm": 0.7906899452209473,
1535
+ "learning_rate": 0.00019430642102843707,
1536
+ "loss": 0.3951,
1537
+ "step": 216
1538
+ },
1539
+ {
1540
+ "epoch": 0.47276688453159044,
1541
+ "grad_norm": 0.7488080859184265,
1542
+ "learning_rate": 0.0001942487398843172,
1543
+ "loss": 0.2522,
1544
+ "step": 217
1545
+ },
1546
+ {
1547
+ "epoch": 0.4749455337690632,
1548
+ "grad_norm": 0.7537955641746521,
1549
+ "learning_rate": 0.00019419077667889872,
1550
+ "loss": 0.4182,
1551
+ "step": 218
1552
+ },
1553
+ {
1554
+ "epoch": 0.477124183006536,
1555
+ "grad_norm": 1.090034008026123,
1556
+ "learning_rate": 0.00019413253158565006,
1557
+ "loss": 0.4396,
1558
+ "step": 219
1559
+ },
1560
+ {
1561
+ "epoch": 0.4793028322440087,
1562
+ "grad_norm": 0.8850147724151611,
1563
+ "learning_rate": 0.00019407400477888315,
1564
+ "loss": 0.4225,
1565
+ "step": 220
1566
+ },
1567
+ {
1568
+ "epoch": 0.48148148148148145,
1569
+ "grad_norm": 0.6652522683143616,
1570
+ "learning_rate": 0.00019401519643375315,
1571
+ "loss": 0.3252,
1572
+ "step": 221
1573
+ },
1574
+ {
1575
+ "epoch": 0.48366013071895425,
1576
+ "grad_norm": 0.9398255348205566,
1577
+ "learning_rate": 0.00019395610672625767,
1578
+ "loss": 0.3825,
1579
+ "step": 222
1580
+ },
1581
+ {
1582
+ "epoch": 0.485838779956427,
1583
+ "grad_norm": 0.7577664852142334,
1584
+ "learning_rate": 0.00019389673583323645,
1585
+ "loss": 0.4972,
1586
+ "step": 223
1587
+ },
1588
+ {
1589
+ "epoch": 0.4880174291938998,
1590
+ "grad_norm": 0.7722988724708557,
1591
+ "learning_rate": 0.00019383708393237075,
1592
+ "loss": 0.3655,
1593
+ "step": 224
1594
+ },
1595
+ {
1596
+ "epoch": 0.49019607843137253,
1597
+ "grad_norm": 0.9242033958435059,
1598
+ "learning_rate": 0.0001937771512021827,
1599
+ "loss": 0.5322,
1600
+ "step": 225
1601
+ },
1602
+ {
1603
+ "epoch": 0.4923747276688453,
1604
+ "grad_norm": 0.7697513699531555,
1605
+ "learning_rate": 0.00019371693782203498,
1606
+ "loss": 0.3516,
1607
+ "step": 226
1608
+ },
1609
+ {
1610
+ "epoch": 0.49455337690631807,
1611
+ "grad_norm": 1.0141658782958984,
1612
+ "learning_rate": 0.00019365644397213014,
1613
+ "loss": 0.4072,
1614
+ "step": 227
1615
+ },
1616
+ {
1617
+ "epoch": 0.49673202614379086,
1618
+ "grad_norm": 0.8579118847846985,
1619
+ "learning_rate": 0.00019359566983351013,
1620
+ "loss": 0.5341,
1621
+ "step": 228
1622
+ },
1623
+ {
1624
+ "epoch": 0.4989106753812636,
1625
+ "grad_norm": 0.9969218969345093,
1626
+ "learning_rate": 0.0001935346155880557,
1627
+ "loss": 0.5544,
1628
+ "step": 229
1629
+ },
1630
+ {
1631
+ "epoch": 0.5010893246187363,
1632
+ "grad_norm": 0.7654063105583191,
1633
+ "learning_rate": 0.0001934732814184859,
1634
+ "loss": 0.3604,
1635
+ "step": 230
1636
+ },
1637
+ {
1638
+ "epoch": 0.5010893246187363,
1639
+ "eval_loss": 0.430705189704895,
1640
+ "eval_runtime": 0.9369,
1641
+ "eval_samples_per_second": 182.508,
1642
+ "eval_steps_per_second": 13.875,
1643
+ "step": 230
1644
+ },
1645
+ {
1646
+ "epoch": 0.5032679738562091,
1647
+ "grad_norm": 0.8155052661895752,
1648
+ "learning_rate": 0.00019341166750835748,
1649
+ "loss": 0.3841,
1650
+ "step": 231
1651
+ },
1652
+ {
1653
+ "epoch": 0.5054466230936819,
1654
+ "grad_norm": 1.005814790725708,
1655
+ "learning_rate": 0.00019334977404206443,
1656
+ "loss": 0.4976,
1657
+ "step": 232
1658
+ },
1659
+ {
1660
+ "epoch": 0.5076252723311547,
1661
+ "grad_norm": 0.795301079750061,
1662
+ "learning_rate": 0.00019328760120483743,
1663
+ "loss": 0.347,
1664
+ "step": 233
1665
+ },
1666
+ {
1667
+ "epoch": 0.5098039215686274,
1668
+ "grad_norm": 0.8294497728347778,
1669
+ "learning_rate": 0.00019322514918274308,
1670
+ "loss": 0.3366,
1671
+ "step": 234
1672
+ },
1673
+ {
1674
+ "epoch": 0.5119825708061002,
1675
+ "grad_norm": 1.0151102542877197,
1676
+ "learning_rate": 0.0001931624181626836,
1677
+ "loss": 0.3217,
1678
+ "step": 235
1679
+ },
1680
+ {
1681
+ "epoch": 0.514161220043573,
1682
+ "grad_norm": 0.8590940833091736,
1683
+ "learning_rate": 0.00019309940833239626,
1684
+ "loss": 0.4399,
1685
+ "step": 236
1686
+ },
1687
+ {
1688
+ "epoch": 0.5163398692810458,
1689
+ "grad_norm": 0.8852725028991699,
1690
+ "learning_rate": 0.00019303611988045257,
1691
+ "loss": 0.3737,
1692
+ "step": 237
1693
+ },
1694
+ {
1695
+ "epoch": 0.5185185185185185,
1696
+ "grad_norm": 0.8230773210525513,
1697
+ "learning_rate": 0.00019297255299625797,
1698
+ "loss": 0.4262,
1699
+ "step": 238
1700
+ },
1701
+ {
1702
+ "epoch": 0.5206971677559913,
1703
+ "grad_norm": 0.6675543785095215,
1704
+ "learning_rate": 0.00019290870787005114,
1705
+ "loss": 0.291,
1706
+ "step": 239
1707
+ },
1708
+ {
1709
+ "epoch": 0.5228758169934641,
1710
+ "grad_norm": 0.867770791053772,
1711
+ "learning_rate": 0.00019284458469290354,
1712
+ "loss": 0.4791,
1713
+ "step": 240
1714
+ },
1715
+ {
1716
+ "epoch": 0.5250544662309368,
1717
+ "grad_norm": 0.6569726467132568,
1718
+ "learning_rate": 0.0001927801836567187,
1719
+ "loss": 0.3331,
1720
+ "step": 241
1721
+ },
1722
+ {
1723
+ "epoch": 0.5272331154684096,
1724
+ "grad_norm": 0.9207850098609924,
1725
+ "learning_rate": 0.00019271550495423168,
1726
+ "loss": 0.3867,
1727
+ "step": 242
1728
+ },
1729
+ {
1730
+ "epoch": 0.5294117647058824,
1731
+ "grad_norm": 0.9937344789505005,
1732
+ "learning_rate": 0.00019265054877900858,
1733
+ "loss": 0.4788,
1734
+ "step": 243
1735
+ },
1736
+ {
1737
+ "epoch": 0.5315904139433552,
1738
+ "grad_norm": 0.6370213627815247,
1739
+ "learning_rate": 0.00019258531532544585,
1740
+ "loss": 0.2628,
1741
+ "step": 244
1742
+ },
1743
+ {
1744
+ "epoch": 0.5337690631808278,
1745
+ "grad_norm": 0.7503904104232788,
1746
+ "learning_rate": 0.00019251980478876985,
1747
+ "loss": 0.3214,
1748
+ "step": 245
1749
+ },
1750
+ {
1751
+ "epoch": 0.5359477124183006,
1752
+ "grad_norm": 0.8075821399688721,
1753
+ "learning_rate": 0.00019245401736503608,
1754
+ "loss": 0.4626,
1755
+ "step": 246
1756
+ },
1757
+ {
1758
+ "epoch": 0.5381263616557734,
1759
+ "grad_norm": 0.7386597990989685,
1760
+ "learning_rate": 0.0001923879532511287,
1761
+ "loss": 0.366,
1762
+ "step": 247
1763
+ },
1764
+ {
1765
+ "epoch": 0.5403050108932462,
1766
+ "grad_norm": 0.7394566535949707,
1767
+ "learning_rate": 0.00019232161264475997,
1768
+ "loss": 0.387,
1769
+ "step": 248
1770
+ },
1771
+ {
1772
+ "epoch": 0.5424836601307189,
1773
+ "grad_norm": 0.7640907168388367,
1774
+ "learning_rate": 0.0001922549957444696,
1775
+ "loss": 0.58,
1776
+ "step": 249
1777
+ },
1778
+ {
1779
+ "epoch": 0.5446623093681917,
1780
+ "grad_norm": 0.6614570021629333,
1781
+ "learning_rate": 0.00019218810274962417,
1782
+ "loss": 0.3073,
1783
+ "step": 250
1784
+ },
1785
+ {
1786
+ "epoch": 0.5468409586056645,
1787
+ "grad_norm": 0.966230034828186,
1788
+ "learning_rate": 0.0001921209338604166,
1789
+ "loss": 0.5173,
1790
+ "step": 251
1791
+ },
1792
+ {
1793
+ "epoch": 0.5490196078431373,
1794
+ "grad_norm": 0.822700560092926,
1795
+ "learning_rate": 0.00019205348927786532,
1796
+ "loss": 0.4205,
1797
+ "step": 252
1798
+ },
1799
+ {
1800
+ "epoch": 0.55119825708061,
1801
+ "grad_norm": 0.7053878307342529,
1802
+ "learning_rate": 0.00019198576920381405,
1803
+ "loss": 0.3872,
1804
+ "step": 253
1805
+ },
1806
+ {
1807
+ "epoch": 0.5533769063180828,
1808
+ "grad_norm": 0.7365344166755676,
1809
+ "learning_rate": 0.00019191777384093081,
1810
+ "loss": 0.2189,
1811
+ "step": 254
1812
+ },
1813
+ {
1814
+ "epoch": 0.5555555555555556,
1815
+ "grad_norm": 0.738994300365448,
1816
+ "learning_rate": 0.0001918495033927076,
1817
+ "loss": 0.4104,
1818
+ "step": 255
1819
+ },
1820
+ {
1821
+ "epoch": 0.5577342047930284,
1822
+ "grad_norm": 0.6301658153533936,
1823
+ "learning_rate": 0.0001917809580634596,
1824
+ "loss": 0.217,
1825
+ "step": 256
1826
+ },
1827
+ {
1828
+ "epoch": 0.5599128540305011,
1829
+ "grad_norm": 0.6912908554077148,
1830
+ "learning_rate": 0.0001917121380583247,
1831
+ "loss": 0.2477,
1832
+ "step": 257
1833
+ },
1834
+ {
1835
+ "epoch": 0.5620915032679739,
1836
+ "grad_norm": 0.7470822930335999,
1837
+ "learning_rate": 0.00019164304358326275,
1838
+ "loss": 0.2822,
1839
+ "step": 258
1840
+ },
1841
+ {
1842
+ "epoch": 0.5642701525054467,
1843
+ "grad_norm": 0.8313736915588379,
1844
+ "learning_rate": 0.0001915736748450551,
1845
+ "loss": 0.4136,
1846
+ "step": 259
1847
+ },
1848
+ {
1849
+ "epoch": 0.5664488017429193,
1850
+ "grad_norm": 0.9498727321624756,
1851
+ "learning_rate": 0.00019150403205130383,
1852
+ "loss": 0.4656,
1853
+ "step": 260
1854
+ },
1855
+ {
1856
+ "epoch": 0.5686274509803921,
1857
+ "grad_norm": 0.7486637830734253,
1858
+ "learning_rate": 0.0001914341154104312,
1859
+ "loss": 0.3612,
1860
+ "step": 261
1861
+ },
1862
+ {
1863
+ "epoch": 0.5708061002178649,
1864
+ "grad_norm": 0.7852402925491333,
1865
+ "learning_rate": 0.00019136392513167903,
1866
+ "loss": 0.3849,
1867
+ "step": 262
1868
+ },
1869
+ {
1870
+ "epoch": 0.5729847494553377,
1871
+ "grad_norm": 0.7787222862243652,
1872
+ "learning_rate": 0.00019129346142510812,
1873
+ "loss": 0.3202,
1874
+ "step": 263
1875
+ },
1876
+ {
1877
+ "epoch": 0.5751633986928104,
1878
+ "grad_norm": 0.7108213305473328,
1879
+ "learning_rate": 0.00019122272450159745,
1880
+ "loss": 0.2964,
1881
+ "step": 264
1882
+ },
1883
+ {
1884
+ "epoch": 0.5773420479302832,
1885
+ "grad_norm": 0.7679167985916138,
1886
+ "learning_rate": 0.00019115171457284382,
1887
+ "loss": 0.3068,
1888
+ "step": 265
1889
+ },
1890
+ {
1891
+ "epoch": 0.579520697167756,
1892
+ "grad_norm": 0.9409091472625732,
1893
+ "learning_rate": 0.0001910804318513609,
1894
+ "loss": 0.3865,
1895
+ "step": 266
1896
+ },
1897
+ {
1898
+ "epoch": 0.5816993464052288,
1899
+ "grad_norm": 0.7475356459617615,
1900
+ "learning_rate": 0.00019100887655047885,
1901
+ "loss": 0.3727,
1902
+ "step": 267
1903
+ },
1904
+ {
1905
+ "epoch": 0.5838779956427015,
1906
+ "grad_norm": 0.8223069310188293,
1907
+ "learning_rate": 0.0001909370488843436,
1908
+ "loss": 0.3594,
1909
+ "step": 268
1910
+ },
1911
+ {
1912
+ "epoch": 0.5860566448801743,
1913
+ "grad_norm": 0.8433902263641357,
1914
+ "learning_rate": 0.00019086494906791614,
1915
+ "loss": 0.3627,
1916
+ "step": 269
1917
+ },
1918
+ {
1919
+ "epoch": 0.5882352941176471,
1920
+ "grad_norm": 0.7213712334632874,
1921
+ "learning_rate": 0.00019079257731697196,
1922
+ "loss": 0.3216,
1923
+ "step": 270
1924
+ },
1925
+ {
1926
+ "epoch": 0.5904139433551199,
1927
+ "grad_norm": 0.9422861337661743,
1928
+ "learning_rate": 0.00019071993384810036,
1929
+ "loss": 0.4973,
1930
+ "step": 271
1931
+ },
1932
+ {
1933
+ "epoch": 0.5925925925925926,
1934
+ "grad_norm": 0.7964383363723755,
1935
+ "learning_rate": 0.0001906470188787039,
1936
+ "loss": 0.3558,
1937
+ "step": 272
1938
+ },
1939
+ {
1940
+ "epoch": 0.5947712418300654,
1941
+ "grad_norm": 0.8275824785232544,
1942
+ "learning_rate": 0.0001905738326269975,
1943
+ "loss": 0.2985,
1944
+ "step": 273
1945
+ },
1946
+ {
1947
+ "epoch": 0.5969498910675382,
1948
+ "grad_norm": 0.9769518971443176,
1949
+ "learning_rate": 0.00019050037531200814,
1950
+ "loss": 0.5299,
1951
+ "step": 274
1952
+ },
1953
+ {
1954
+ "epoch": 0.599128540305011,
1955
+ "grad_norm": 0.6739898920059204,
1956
+ "learning_rate": 0.0001904266471535739,
1957
+ "loss": 0.2324,
1958
+ "step": 275
1959
+ },
1960
+ {
1961
+ "epoch": 0.6013071895424836,
1962
+ "grad_norm": 0.78001868724823,
1963
+ "learning_rate": 0.00019035264837234347,
1964
+ "loss": 0.3311,
1965
+ "step": 276
1966
+ },
1967
+ {
1968
+ "epoch": 0.6034858387799564,
1969
+ "grad_norm": 0.6510067582130432,
1970
+ "learning_rate": 0.00019027837918977544,
1971
+ "loss": 0.2284,
1972
+ "step": 277
1973
+ },
1974
+ {
1975
+ "epoch": 0.6056644880174292,
1976
+ "grad_norm": 0.7791504859924316,
1977
+ "learning_rate": 0.00019020383982813765,
1978
+ "loss": 0.3247,
1979
+ "step": 278
1980
+ },
1981
+ {
1982
+ "epoch": 0.6078431372549019,
1983
+ "grad_norm": 0.7968712449073792,
1984
+ "learning_rate": 0.00019012903051050643,
1985
+ "loss": 0.3379,
1986
+ "step": 279
1987
+ },
1988
+ {
1989
+ "epoch": 0.6100217864923747,
1990
+ "grad_norm": 0.7802785038948059,
1991
+ "learning_rate": 0.00019005395146076616,
1992
+ "loss": 0.3113,
1993
+ "step": 280
1994
+ },
1995
+ {
1996
+ "epoch": 0.6122004357298475,
1997
+ "grad_norm": 0.8003398180007935,
1998
+ "learning_rate": 0.00018997860290360832,
1999
+ "loss": 0.3467,
2000
+ "step": 281
2001
+ },
2002
+ {
2003
+ "epoch": 0.6143790849673203,
2004
+ "grad_norm": 0.9283706545829773,
2005
+ "learning_rate": 0.00018990298506453104,
2006
+ "loss": 0.3301,
2007
+ "step": 282
2008
+ },
2009
+ {
2010
+ "epoch": 0.616557734204793,
2011
+ "grad_norm": 0.95260089635849,
2012
+ "learning_rate": 0.00018982709816983828,
2013
+ "loss": 0.4446,
2014
+ "step": 283
2015
+ },
2016
+ {
2017
+ "epoch": 0.6187363834422658,
2018
+ "grad_norm": 0.8746076226234436,
2019
+ "learning_rate": 0.0001897509424466393,
2020
+ "loss": 0.3264,
2021
+ "step": 284
2022
+ },
2023
+ {
2024
+ "epoch": 0.6209150326797386,
2025
+ "grad_norm": 0.9784271717071533,
2026
+ "learning_rate": 0.00018967451812284777,
2027
+ "loss": 0.3103,
2028
+ "step": 285
2029
+ },
2030
+ {
2031
+ "epoch": 0.6230936819172114,
2032
+ "grad_norm": 0.7417327165603638,
2033
+ "learning_rate": 0.00018959782542718128,
2034
+ "loss": 0.3489,
2035
+ "step": 286
2036
+ },
2037
+ {
2038
+ "epoch": 0.6252723311546841,
2039
+ "grad_norm": 0.835861325263977,
2040
+ "learning_rate": 0.00018952086458916064,
2041
+ "loss": 0.4059,
2042
+ "step": 287
2043
+ },
2044
+ {
2045
+ "epoch": 0.6274509803921569,
2046
+ "grad_norm": 0.7815294861793518,
2047
+ "learning_rate": 0.000189443635839109,
2048
+ "loss": 0.3252,
2049
+ "step": 288
2050
+ },
2051
+ {
2052
+ "epoch": 0.6296296296296297,
2053
+ "grad_norm": 0.7762477993965149,
2054
+ "learning_rate": 0.00018936613940815145,
2055
+ "loss": 0.3905,
2056
+ "step": 289
2057
+ },
2058
+ {
2059
+ "epoch": 0.6318082788671024,
2060
+ "grad_norm": 0.7671297192573547,
2061
+ "learning_rate": 0.00018928837552821404,
2062
+ "loss": 0.3945,
2063
+ "step": 290
2064
+ },
2065
+ {
2066
+ "epoch": 0.6339869281045751,
2067
+ "grad_norm": 0.7193905711174011,
2068
+ "learning_rate": 0.00018921034443202333,
2069
+ "loss": 0.2897,
2070
+ "step": 291
2071
+ },
2072
+ {
2073
+ "epoch": 0.6361655773420479,
2074
+ "grad_norm": 0.7806922793388367,
2075
+ "learning_rate": 0.0001891320463531055,
2076
+ "loss": 0.3675,
2077
+ "step": 292
2078
+ },
2079
+ {
2080
+ "epoch": 0.6383442265795207,
2081
+ "grad_norm": 0.9675951600074768,
2082
+ "learning_rate": 0.0001890534815257858,
2083
+ "loss": 0.2949,
2084
+ "step": 293
2085
+ },
2086
+ {
2087
+ "epoch": 0.6405228758169934,
2088
+ "grad_norm": 0.7414330840110779,
2089
+ "learning_rate": 0.00018897465018518782,
2090
+ "loss": 0.2468,
2091
+ "step": 294
2092
+ },
2093
+ {
2094
+ "epoch": 0.6427015250544662,
2095
+ "grad_norm": 0.9123559594154358,
2096
+ "learning_rate": 0.00018889555256723262,
2097
+ "loss": 0.3618,
2098
+ "step": 295
2099
+ },
2100
+ {
2101
+ "epoch": 0.644880174291939,
2102
+ "grad_norm": 0.8628408312797546,
2103
+ "learning_rate": 0.0001888161889086383,
2104
+ "loss": 0.4728,
2105
+ "step": 296
2106
+ },
2107
+ {
2108
+ "epoch": 0.6470588235294118,
2109
+ "grad_norm": 0.9308063983917236,
2110
+ "learning_rate": 0.00018873655944691902,
2111
+ "loss": 0.3469,
2112
+ "step": 297
2113
+ },
2114
+ {
2115
+ "epoch": 0.6492374727668845,
2116
+ "grad_norm": 0.7682824730873108,
2117
+ "learning_rate": 0.00018865666442038456,
2118
+ "loss": 0.4138,
2119
+ "step": 298
2120
+ },
2121
+ {
2122
+ "epoch": 0.6514161220043573,
2123
+ "grad_norm": 0.8124529123306274,
2124
+ "learning_rate": 0.00018857650406813937,
2125
+ "loss": 0.3172,
2126
+ "step": 299
2127
+ },
2128
+ {
2129
+ "epoch": 0.6535947712418301,
2130
+ "grad_norm": 1.0015543699264526,
2131
+ "learning_rate": 0.00018849607863008193,
2132
+ "loss": 0.3274,
2133
+ "step": 300
2134
+ },
2135
+ {
2136
+ "epoch": 0.6557734204793029,
2137
+ "grad_norm": 0.8008652329444885,
2138
+ "learning_rate": 0.0001884153883469041,
2139
+ "loss": 0.2765,
2140
+ "step": 301
2141
+ },
2142
+ {
2143
+ "epoch": 0.6579520697167756,
2144
+ "grad_norm": 0.8472908139228821,
2145
+ "learning_rate": 0.0001883344334600904,
2146
+ "loss": 0.362,
2147
+ "step": 302
2148
+ },
2149
+ {
2150
+ "epoch": 0.6601307189542484,
2151
+ "grad_norm": 0.953235387802124,
2152
+ "learning_rate": 0.0001882532142119171,
2153
+ "loss": 0.383,
2154
+ "step": 303
2155
+ },
2156
+ {
2157
+ "epoch": 0.6623093681917211,
2158
+ "grad_norm": 0.9220999479293823,
2159
+ "learning_rate": 0.00018817173084545176,
2160
+ "loss": 0.4209,
2161
+ "step": 304
2162
+ },
2163
+ {
2164
+ "epoch": 0.664488017429194,
2165
+ "grad_norm": 0.7949219942092896,
2166
+ "learning_rate": 0.00018808998360455233,
2167
+ "loss": 0.3869,
2168
+ "step": 305
2169
+ },
2170
+ {
2171
+ "epoch": 0.6666666666666666,
2172
+ "grad_norm": 0.851177990436554,
2173
+ "learning_rate": 0.0001880079727338664,
2174
+ "loss": 0.2691,
2175
+ "step": 306
2176
+ },
2177
+ {
2178
+ "epoch": 0.6688453159041394,
2179
+ "grad_norm": 0.8438466787338257,
2180
+ "learning_rate": 0.00018792569847883068,
2181
+ "loss": 0.3314,
2182
+ "step": 307
2183
+ },
2184
+ {
2185
+ "epoch": 0.6710239651416122,
2186
+ "grad_norm": 0.842267632484436,
2187
+ "learning_rate": 0.00018784316108566996,
2188
+ "loss": 0.3046,
2189
+ "step": 308
2190
+ },
2191
+ {
2192
+ "epoch": 0.673202614379085,
2193
+ "grad_norm": 0.6835848689079285,
2194
+ "learning_rate": 0.00018776036080139666,
2195
+ "loss": 0.2026,
2196
+ "step": 309
2197
+ },
2198
+ {
2199
+ "epoch": 0.6753812636165577,
2200
+ "grad_norm": 0.8685810565948486,
2201
+ "learning_rate": 0.00018767729787380985,
2202
+ "loss": 0.2611,
2203
+ "step": 310
2204
+ },
2205
+ {
2206
+ "epoch": 0.6775599128540305,
2207
+ "grad_norm": 0.8736341595649719,
2208
+ "learning_rate": 0.00018759397255149475,
2209
+ "loss": 0.3135,
2210
+ "step": 311
2211
+ },
2212
+ {
2213
+ "epoch": 0.6797385620915033,
2214
+ "grad_norm": 0.6718863844871521,
2215
+ "learning_rate": 0.00018751038508382176,
2216
+ "loss": 0.2202,
2217
+ "step": 312
2218
+ },
2219
+ {
2220
+ "epoch": 0.681917211328976,
2221
+ "grad_norm": 0.686114490032196,
2222
+ "learning_rate": 0.00018742653572094583,
2223
+ "loss": 0.2861,
2224
+ "step": 313
2225
+ },
2226
+ {
2227
+ "epoch": 0.6840958605664488,
2228
+ "grad_norm": 0.7779257297515869,
2229
+ "learning_rate": 0.00018734242471380572,
2230
+ "loss": 0.2375,
2231
+ "step": 314
2232
+ },
2233
+ {
2234
+ "epoch": 0.6862745098039216,
2235
+ "grad_norm": 0.7334826588630676,
2236
+ "learning_rate": 0.00018725805231412318,
2237
+ "loss": 0.2855,
2238
+ "step": 315
2239
+ },
2240
+ {
2241
+ "epoch": 0.6884531590413944,
2242
+ "grad_norm": 0.8215782046318054,
2243
+ "learning_rate": 0.00018717341877440226,
2244
+ "loss": 0.2827,
2245
+ "step": 316
2246
+ },
2247
+ {
2248
+ "epoch": 0.690631808278867,
2249
+ "grad_norm": 0.7793420553207397,
2250
+ "learning_rate": 0.00018708852434792857,
2251
+ "loss": 0.3593,
2252
+ "step": 317
2253
+ },
2254
+ {
2255
+ "epoch": 0.6928104575163399,
2256
+ "grad_norm": 0.6807507872581482,
2257
+ "learning_rate": 0.0001870033692887684,
2258
+ "loss": 0.2489,
2259
+ "step": 318
2260
+ },
2261
+ {
2262
+ "epoch": 0.6949891067538126,
2263
+ "grad_norm": 0.8848825097084045,
2264
+ "learning_rate": 0.00018691795385176815,
2265
+ "loss": 0.3622,
2266
+ "step": 319
2267
+ },
2268
+ {
2269
+ "epoch": 0.6971677559912854,
2270
+ "grad_norm": 0.7745735049247742,
2271
+ "learning_rate": 0.00018683227829255334,
2272
+ "loss": 0.2808,
2273
+ "step": 320
2274
+ },
2275
+ {
2276
+ "epoch": 0.6993464052287581,
2277
+ "grad_norm": 0.8624871969223022,
2278
+ "learning_rate": 0.00018674634286752805,
2279
+ "loss": 0.326,
2280
+ "step": 321
2281
+ },
2282
+ {
2283
+ "epoch": 0.7015250544662309,
2284
+ "grad_norm": 0.7500248551368713,
2285
+ "learning_rate": 0.00018666014783387408,
2286
+ "loss": 0.3413,
2287
+ "step": 322
2288
+ },
2289
+ {
2290
+ "epoch": 0.7037037037037037,
2291
+ "grad_norm": 0.7700647115707397,
2292
+ "learning_rate": 0.0001865736934495501,
2293
+ "loss": 0.2878,
2294
+ "step": 323
2295
+ },
2296
+ {
2297
+ "epoch": 0.7058823529411765,
2298
+ "grad_norm": 0.7682783603668213,
2299
+ "learning_rate": 0.000186486979973291,
2300
+ "loss": 0.3626,
2301
+ "step": 324
2302
+ },
2303
+ {
2304
+ "epoch": 0.7080610021786492,
2305
+ "grad_norm": 0.8913851976394653,
2306
+ "learning_rate": 0.00018640000766460704,
2307
+ "loss": 0.3684,
2308
+ "step": 325
2309
+ },
2310
+ {
2311
+ "epoch": 0.710239651416122,
2312
+ "grad_norm": 0.6541398763656616,
2313
+ "learning_rate": 0.0001863127767837831,
2314
+ "loss": 0.3203,
2315
+ "step": 326
2316
+ },
2317
+ {
2318
+ "epoch": 0.7124183006535948,
2319
+ "grad_norm": 0.9459714889526367,
2320
+ "learning_rate": 0.00018622528759187795,
2321
+ "loss": 0.3794,
2322
+ "step": 327
2323
+ },
2324
+ {
2325
+ "epoch": 0.7145969498910676,
2326
+ "grad_norm": 0.8284517526626587,
2327
+ "learning_rate": 0.0001861375403507233,
2328
+ "loss": 0.2859,
2329
+ "step": 328
2330
+ },
2331
+ {
2332
+ "epoch": 0.7167755991285403,
2333
+ "grad_norm": 0.7966834306716919,
2334
+ "learning_rate": 0.00018604953532292323,
2335
+ "loss": 0.3299,
2336
+ "step": 329
2337
+ },
2338
+ {
2339
+ "epoch": 0.7189542483660131,
2340
+ "grad_norm": 0.9105852842330933,
2341
+ "learning_rate": 0.00018596127277185329,
2342
+ "loss": 0.3489,
2343
+ "step": 330
2344
+ },
2345
+ {
2346
+ "epoch": 0.7211328976034859,
2347
+ "grad_norm": 0.9086281657218933,
2348
+ "learning_rate": 0.0001858727529616597,
2349
+ "loss": 0.4104,
2350
+ "step": 331
2351
+ },
2352
+ {
2353
+ "epoch": 0.7233115468409586,
2354
+ "grad_norm": 0.8128787875175476,
2355
+ "learning_rate": 0.0001857839761572586,
2356
+ "loss": 0.3057,
2357
+ "step": 332
2358
+ },
2359
+ {
2360
+ "epoch": 0.7254901960784313,
2361
+ "grad_norm": 0.7139798402786255,
2362
+ "learning_rate": 0.0001856949426243352,
2363
+ "loss": 0.2226,
2364
+ "step": 333
2365
+ },
2366
+ {
2367
+ "epoch": 0.7276688453159041,
2368
+ "grad_norm": 0.8051466941833496,
2369
+ "learning_rate": 0.00018560565262934318,
2370
+ "loss": 0.2778,
2371
+ "step": 334
2372
+ },
2373
+ {
2374
+ "epoch": 0.7298474945533769,
2375
+ "grad_norm": 0.7806089520454407,
2376
+ "learning_rate": 0.00018551610643950358,
2377
+ "loss": 0.3074,
2378
+ "step": 335
2379
+ },
2380
+ {
2381
+ "epoch": 0.7320261437908496,
2382
+ "grad_norm": 0.8499903678894043,
2383
+ "learning_rate": 0.00018542630432280422,
2384
+ "loss": 0.2625,
2385
+ "step": 336
2386
+ },
2387
+ {
2388
+ "epoch": 0.7342047930283224,
2389
+ "grad_norm": 0.9724310040473938,
2390
+ "learning_rate": 0.00018533624654799887,
2391
+ "loss": 0.3267,
2392
+ "step": 337
2393
+ },
2394
+ {
2395
+ "epoch": 0.7363834422657952,
2396
+ "grad_norm": 0.845237135887146,
2397
+ "learning_rate": 0.00018524593338460635,
2398
+ "loss": 0.3624,
2399
+ "step": 338
2400
+ },
2401
+ {
2402
+ "epoch": 0.738562091503268,
2403
+ "grad_norm": 0.8381814360618591,
2404
+ "learning_rate": 0.00018515536510290987,
2405
+ "loss": 0.2973,
2406
+ "step": 339
2407
+ },
2408
+ {
2409
+ "epoch": 0.7407407407407407,
2410
+ "grad_norm": 0.7939983606338501,
2411
+ "learning_rate": 0.00018506454197395606,
2412
+ "loss": 0.2893,
2413
+ "step": 340
2414
+ },
2415
+ {
2416
+ "epoch": 0.7429193899782135,
2417
+ "grad_norm": 1.1554635763168335,
2418
+ "learning_rate": 0.00018497346426955434,
2419
+ "loss": 0.4355,
2420
+ "step": 341
2421
+ },
2422
+ {
2423
+ "epoch": 0.7450980392156863,
2424
+ "grad_norm": 0.7291870713233948,
2425
+ "learning_rate": 0.00018488213226227588,
2426
+ "loss": 0.3172,
2427
+ "step": 342
2428
+ },
2429
+ {
2430
+ "epoch": 0.7472766884531591,
2431
+ "grad_norm": 0.6162805557250977,
2432
+ "learning_rate": 0.00018479054622545302,
2433
+ "loss": 0.1914,
2434
+ "step": 343
2435
+ },
2436
+ {
2437
+ "epoch": 0.7494553376906318,
2438
+ "grad_norm": 0.800554096698761,
2439
+ "learning_rate": 0.0001846987064331783,
2440
+ "loss": 0.3092,
2441
+ "step": 344
2442
+ },
2443
+ {
2444
+ "epoch": 0.7516339869281046,
2445
+ "grad_norm": 0.8024484515190125,
2446
+ "learning_rate": 0.00018460661316030365,
2447
+ "loss": 0.2598,
2448
+ "step": 345
2449
+ },
2450
+ {
2451
+ "epoch": 0.7516339869281046,
2452
+ "eval_loss": 0.35579976439476013,
2453
+ "eval_runtime": 0.9369,
2454
+ "eval_samples_per_second": 182.512,
2455
+ "eval_steps_per_second": 13.875,
2456
+ "step": 345
2457
+ },
2458
+ {
2459
+ "epoch": 0.7538126361655774,
2460
+ "grad_norm": 0.6010091304779053,
2461
+ "learning_rate": 0.00018451426668243963,
2462
+ "loss": 0.1268,
2463
+ "step": 346
2464
+ },
2465
+ {
2466
+ "epoch": 0.7559912854030502,
2467
+ "grad_norm": 0.909592866897583,
2468
+ "learning_rate": 0.0001844216672759546,
2469
+ "loss": 0.2808,
2470
+ "step": 347
2471
+ },
2472
+ {
2473
+ "epoch": 0.7581699346405228,
2474
+ "grad_norm": 0.8788052201271057,
2475
+ "learning_rate": 0.0001843288152179739,
2476
+ "loss": 0.3516,
2477
+ "step": 348
2478
+ },
2479
+ {
2480
+ "epoch": 0.7603485838779956,
2481
+ "grad_norm": 0.987259030342102,
2482
+ "learning_rate": 0.00018423571078637885,
2483
+ "loss": 0.4607,
2484
+ "step": 349
2485
+ },
2486
+ {
2487
+ "epoch": 0.7625272331154684,
2488
+ "grad_norm": 1.0777586698532104,
2489
+ "learning_rate": 0.00018414235425980616,
2490
+ "loss": 0.3367,
2491
+ "step": 350
2492
+ },
2493
+ {
2494
+ "epoch": 0.7647058823529411,
2495
+ "grad_norm": 0.8233873844146729,
2496
+ "learning_rate": 0.00018404874591764696,
2497
+ "loss": 0.2616,
2498
+ "step": 351
2499
+ },
2500
+ {
2501
+ "epoch": 0.7668845315904139,
2502
+ "grad_norm": 0.6623446345329285,
2503
+ "learning_rate": 0.00018395488604004603,
2504
+ "loss": 0.154,
2505
+ "step": 352
2506
+ },
2507
+ {
2508
+ "epoch": 0.7690631808278867,
2509
+ "grad_norm": 0.9828007817268372,
2510
+ "learning_rate": 0.0001838607749079009,
2511
+ "loss": 0.3084,
2512
+ "step": 353
2513
+ },
2514
+ {
2515
+ "epoch": 0.7712418300653595,
2516
+ "grad_norm": 0.7043982148170471,
2517
+ "learning_rate": 0.00018376641280286107,
2518
+ "loss": 0.2568,
2519
+ "step": 354
2520
+ },
2521
+ {
2522
+ "epoch": 0.7734204793028322,
2523
+ "grad_norm": 0.7597530484199524,
2524
+ "learning_rate": 0.00018367180000732706,
2525
+ "loss": 0.306,
2526
+ "step": 355
2527
+ },
2528
+ {
2529
+ "epoch": 0.775599128540305,
2530
+ "grad_norm": 0.8099778890609741,
2531
+ "learning_rate": 0.00018357693680444976,
2532
+ "loss": 0.2389,
2533
+ "step": 356
2534
+ },
2535
+ {
2536
+ "epoch": 0.7777777777777778,
2537
+ "grad_norm": 0.7014642953872681,
2538
+ "learning_rate": 0.00018348182347812931,
2539
+ "loss": 0.2601,
2540
+ "step": 357
2541
+ },
2542
+ {
2543
+ "epoch": 0.7799564270152506,
2544
+ "grad_norm": 0.8545548915863037,
2545
+ "learning_rate": 0.00018338646031301458,
2546
+ "loss": 0.3604,
2547
+ "step": 358
2548
+ },
2549
+ {
2550
+ "epoch": 0.7821350762527233,
2551
+ "grad_norm": 0.7516512870788574,
2552
+ "learning_rate": 0.00018329084759450192,
2553
+ "loss": 0.2489,
2554
+ "step": 359
2555
+ },
2556
+ {
2557
+ "epoch": 0.7843137254901961,
2558
+ "grad_norm": 0.8581446409225464,
2559
+ "learning_rate": 0.00018319498560873476,
2560
+ "loss": 0.28,
2561
+ "step": 360
2562
+ },
2563
+ {
2564
+ "epoch": 0.7864923747276689,
2565
+ "grad_norm": 0.8704679608345032,
2566
+ "learning_rate": 0.00018309887464260238,
2567
+ "loss": 0.3917,
2568
+ "step": 361
2569
+ },
2570
+ {
2571
+ "epoch": 0.7886710239651417,
2572
+ "grad_norm": 0.832797110080719,
2573
+ "learning_rate": 0.00018300251498373923,
2574
+ "loss": 0.3356,
2575
+ "step": 362
2576
+ },
2577
+ {
2578
+ "epoch": 0.7908496732026143,
2579
+ "grad_norm": 0.787756085395813,
2580
+ "learning_rate": 0.00018290590692052398,
2581
+ "loss": 0.3156,
2582
+ "step": 363
2583
+ },
2584
+ {
2585
+ "epoch": 0.7930283224400871,
2586
+ "grad_norm": 1.014853596687317,
2587
+ "learning_rate": 0.00018280905074207884,
2588
+ "loss": 0.3131,
2589
+ "step": 364
2590
+ },
2591
+ {
2592
+ "epoch": 0.7952069716775599,
2593
+ "grad_norm": 0.7135484218597412,
2594
+ "learning_rate": 0.00018271194673826838,
2595
+ "loss": 0.1935,
2596
+ "step": 365
2597
+ },
2598
+ {
2599
+ "epoch": 0.7973856209150327,
2600
+ "grad_norm": 0.6172918677330017,
2601
+ "learning_rate": 0.000182614595199699,
2602
+ "loss": 0.1916,
2603
+ "step": 366
2604
+ },
2605
+ {
2606
+ "epoch": 0.7995642701525054,
2607
+ "grad_norm": 0.689791738986969,
2608
+ "learning_rate": 0.00018251699641771784,
2609
+ "loss": 0.1738,
2610
+ "step": 367
2611
+ },
2612
+ {
2613
+ "epoch": 0.8017429193899782,
2614
+ "grad_norm": 0.8571555614471436,
2615
+ "learning_rate": 0.00018241915068441196,
2616
+ "loss": 0.2738,
2617
+ "step": 368
2618
+ },
2619
+ {
2620
+ "epoch": 0.803921568627451,
2621
+ "grad_norm": 0.7348290681838989,
2622
+ "learning_rate": 0.00018232105829260752,
2623
+ "loss": 0.1617,
2624
+ "step": 369
2625
+ },
2626
+ {
2627
+ "epoch": 0.8061002178649237,
2628
+ "grad_norm": 0.72556471824646,
2629
+ "learning_rate": 0.00018222271953586883,
2630
+ "loss": 0.2201,
2631
+ "step": 370
2632
+ },
2633
+ {
2634
+ "epoch": 0.8082788671023965,
2635
+ "grad_norm": 0.915581226348877,
2636
+ "learning_rate": 0.0001821241347084975,
2637
+ "loss": 0.3508,
2638
+ "step": 371
2639
+ },
2640
+ {
2641
+ "epoch": 0.8104575163398693,
2642
+ "grad_norm": 0.9371058344841003,
2643
+ "learning_rate": 0.00018202530410553163,
2644
+ "loss": 0.3495,
2645
+ "step": 372
2646
+ },
2647
+ {
2648
+ "epoch": 0.8126361655773421,
2649
+ "grad_norm": 0.696180522441864,
2650
+ "learning_rate": 0.00018192622802274476,
2651
+ "loss": 0.2297,
2652
+ "step": 373
2653
+ },
2654
+ {
2655
+ "epoch": 0.8148148148148148,
2656
+ "grad_norm": 1.2849663496017456,
2657
+ "learning_rate": 0.00018182690675664514,
2658
+ "loss": 0.3872,
2659
+ "step": 374
2660
+ },
2661
+ {
2662
+ "epoch": 0.8169934640522876,
2663
+ "grad_norm": 0.7671440243721008,
2664
+ "learning_rate": 0.00018172734060447482,
2665
+ "loss": 0.2522,
2666
+ "step": 375
2667
+ },
2668
+ {
2669
+ "epoch": 0.8191721132897604,
2670
+ "grad_norm": 0.7630666494369507,
2671
+ "learning_rate": 0.00018162752986420868,
2672
+ "loss": 0.1857,
2673
+ "step": 376
2674
+ },
2675
+ {
2676
+ "epoch": 0.8213507625272332,
2677
+ "grad_norm": 0.8664875626564026,
2678
+ "learning_rate": 0.00018152747483455358,
2679
+ "loss": 0.3085,
2680
+ "step": 377
2681
+ },
2682
+ {
2683
+ "epoch": 0.8235294117647058,
2684
+ "grad_norm": 0.7418748140335083,
2685
+ "learning_rate": 0.0001814271758149475,
2686
+ "loss": 0.2537,
2687
+ "step": 378
2688
+ },
2689
+ {
2690
+ "epoch": 0.8257080610021786,
2691
+ "grad_norm": 0.9873255491256714,
2692
+ "learning_rate": 0.0001813266331055586,
2693
+ "loss": 0.335,
2694
+ "step": 379
2695
+ },
2696
+ {
2697
+ "epoch": 0.8278867102396514,
2698
+ "grad_norm": 0.8407981991767883,
2699
+ "learning_rate": 0.00018122584700728443,
2700
+ "loss": 0.2625,
2701
+ "step": 380
2702
+ },
2703
+ {
2704
+ "epoch": 0.8300653594771242,
2705
+ "grad_norm": 0.8493285179138184,
2706
+ "learning_rate": 0.0001811248178217507,
2707
+ "loss": 0.2167,
2708
+ "step": 381
2709
+ },
2710
+ {
2711
+ "epoch": 0.8322440087145969,
2712
+ "grad_norm": 0.7906709909439087,
2713
+ "learning_rate": 0.00018102354585131092,
2714
+ "loss": 0.2919,
2715
+ "step": 382
2716
+ },
2717
+ {
2718
+ "epoch": 0.8344226579520697,
2719
+ "grad_norm": 0.8033335208892822,
2720
+ "learning_rate": 0.00018092203139904496,
2721
+ "loss": 0.2571,
2722
+ "step": 383
2723
+ },
2724
+ {
2725
+ "epoch": 0.8366013071895425,
2726
+ "grad_norm": 0.616438627243042,
2727
+ "learning_rate": 0.00018082027476875847,
2728
+ "loss": 0.2102,
2729
+ "step": 384
2730
+ },
2731
+ {
2732
+ "epoch": 0.8387799564270153,
2733
+ "grad_norm": 0.6517376899719238,
2734
+ "learning_rate": 0.00018071827626498185,
2735
+ "loss": 0.2242,
2736
+ "step": 385
2737
+ },
2738
+ {
2739
+ "epoch": 0.840958605664488,
2740
+ "grad_norm": 0.7315549254417419,
2741
+ "learning_rate": 0.00018061603619296942,
2742
+ "loss": 0.2594,
2743
+ "step": 386
2744
+ },
2745
+ {
2746
+ "epoch": 0.8431372549019608,
2747
+ "grad_norm": 0.6937726736068726,
2748
+ "learning_rate": 0.00018051355485869833,
2749
+ "loss": 0.1991,
2750
+ "step": 387
2751
+ },
2752
+ {
2753
+ "epoch": 0.8453159041394336,
2754
+ "grad_norm": 0.7155842185020447,
2755
+ "learning_rate": 0.0001804108325688679,
2756
+ "loss": 0.2051,
2757
+ "step": 388
2758
+ },
2759
+ {
2760
+ "epoch": 0.8474945533769063,
2761
+ "grad_norm": 1.1797689199447632,
2762
+ "learning_rate": 0.00018030786963089845,
2763
+ "loss": 0.3421,
2764
+ "step": 389
2765
+ },
2766
+ {
2767
+ "epoch": 0.8496732026143791,
2768
+ "grad_norm": 0.7603274583816528,
2769
+ "learning_rate": 0.00018020466635293057,
2770
+ "loss": 0.1985,
2771
+ "step": 390
2772
+ },
2773
+ {
2774
+ "epoch": 0.8518518518518519,
2775
+ "grad_norm": 0.7939961552619934,
2776
+ "learning_rate": 0.0001801012230438241,
2777
+ "loss": 0.2753,
2778
+ "step": 391
2779
+ },
2780
+ {
2781
+ "epoch": 0.8540305010893247,
2782
+ "grad_norm": 0.8357366323471069,
2783
+ "learning_rate": 0.0001799975400131572,
2784
+ "loss": 0.3453,
2785
+ "step": 392
2786
+ },
2787
+ {
2788
+ "epoch": 0.8562091503267973,
2789
+ "grad_norm": 0.7716991305351257,
2790
+ "learning_rate": 0.00017989361757122553,
2791
+ "loss": 0.2441,
2792
+ "step": 393
2793
+ },
2794
+ {
2795
+ "epoch": 0.8583877995642701,
2796
+ "grad_norm": 0.7844340205192566,
2797
+ "learning_rate": 0.00017978945602904116,
2798
+ "loss": 0.3635,
2799
+ "step": 394
2800
+ },
2801
+ {
2802
+ "epoch": 0.8605664488017429,
2803
+ "grad_norm": 0.6692304611206055,
2804
+ "learning_rate": 0.00017968505569833173,
2805
+ "loss": 0.1895,
2806
+ "step": 395
2807
+ },
2808
+ {
2809
+ "epoch": 0.8627450980392157,
2810
+ "grad_norm": 0.7669034004211426,
2811
+ "learning_rate": 0.0001795804168915396,
2812
+ "loss": 0.1833,
2813
+ "step": 396
2814
+ },
2815
+ {
2816
+ "epoch": 0.8649237472766884,
2817
+ "grad_norm": 0.9231857657432556,
2818
+ "learning_rate": 0.00017947553992182075,
2819
+ "loss": 0.3172,
2820
+ "step": 397
2821
+ },
2822
+ {
2823
+ "epoch": 0.8671023965141612,
2824
+ "grad_norm": 0.9847748875617981,
2825
+ "learning_rate": 0.00017937042510304392,
2826
+ "loss": 0.3479,
2827
+ "step": 398
2828
+ },
2829
+ {
2830
+ "epoch": 0.869281045751634,
2831
+ "grad_norm": 0.719962477684021,
2832
+ "learning_rate": 0.00017926507274978963,
2833
+ "loss": 0.2653,
2834
+ "step": 399
2835
+ },
2836
+ {
2837
+ "epoch": 0.8714596949891068,
2838
+ "grad_norm": 0.7490435242652893,
2839
+ "learning_rate": 0.00017915948317734942,
2840
+ "loss": 0.2387,
2841
+ "step": 400
2842
+ },
2843
+ {
2844
+ "epoch": 0.8736383442265795,
2845
+ "grad_norm": 0.744804322719574,
2846
+ "learning_rate": 0.00017905365670172458,
2847
+ "loss": 0.2368,
2848
+ "step": 401
2849
+ },
2850
+ {
2851
+ "epoch": 0.8758169934640523,
2852
+ "grad_norm": 0.6886241436004639,
2853
+ "learning_rate": 0.00017894759363962554,
2854
+ "loss": 0.2125,
2855
+ "step": 402
2856
+ },
2857
+ {
2858
+ "epoch": 0.8779956427015251,
2859
+ "grad_norm": 0.7730022072792053,
2860
+ "learning_rate": 0.0001788412943084707,
2861
+ "loss": 0.2253,
2862
+ "step": 403
2863
+ },
2864
+ {
2865
+ "epoch": 0.8801742919389978,
2866
+ "grad_norm": 0.8058857321739197,
2867
+ "learning_rate": 0.00017873475902638553,
2868
+ "loss": 0.2845,
2869
+ "step": 404
2870
+ },
2871
+ {
2872
+ "epoch": 0.8823529411764706,
2873
+ "grad_norm": 0.6579281091690063,
2874
+ "learning_rate": 0.0001786279881122017,
2875
+ "loss": 0.1922,
2876
+ "step": 405
2877
+ },
2878
+ {
2879
+ "epoch": 0.8845315904139434,
2880
+ "grad_norm": 0.6769328713417053,
2881
+ "learning_rate": 0.00017852098188545602,
2882
+ "loss": 0.1609,
2883
+ "step": 406
2884
+ },
2885
+ {
2886
+ "epoch": 0.8867102396514162,
2887
+ "grad_norm": 0.7010467648506165,
2888
+ "learning_rate": 0.0001784137406663895,
2889
+ "loss": 0.2387,
2890
+ "step": 407
2891
+ },
2892
+ {
2893
+ "epoch": 0.8888888888888888,
2894
+ "grad_norm": 0.7626838088035583,
2895
+ "learning_rate": 0.00017830626477594654,
2896
+ "loss": 0.237,
2897
+ "step": 408
2898
+ },
2899
+ {
2900
+ "epoch": 0.8910675381263616,
2901
+ "grad_norm": 0.8782392144203186,
2902
+ "learning_rate": 0.0001781985545357737,
2903
+ "loss": 0.3278,
2904
+ "step": 409
2905
+ },
2906
+ {
2907
+ "epoch": 0.8932461873638344,
2908
+ "grad_norm": 0.6178898215293884,
2909
+ "learning_rate": 0.00017809061026821896,
2910
+ "loss": 0.1584,
2911
+ "step": 410
2912
+ },
2913
+ {
2914
+ "epoch": 0.8954248366013072,
2915
+ "grad_norm": 0.7101506590843201,
2916
+ "learning_rate": 0.00017798243229633068,
2917
+ "loss": 0.2384,
2918
+ "step": 411
2919
+ },
2920
+ {
2921
+ "epoch": 0.8976034858387799,
2922
+ "grad_norm": 0.5807170867919922,
2923
+ "learning_rate": 0.00017787402094385666,
2924
+ "loss": 0.1256,
2925
+ "step": 412
2926
+ },
2927
+ {
2928
+ "epoch": 0.8997821350762527,
2929
+ "grad_norm": 0.6202595829963684,
2930
+ "learning_rate": 0.00017776537653524307,
2931
+ "loss": 0.168,
2932
+ "step": 413
2933
+ },
2934
+ {
2935
+ "epoch": 0.9019607843137255,
2936
+ "grad_norm": 0.5887298583984375,
2937
+ "learning_rate": 0.00017765649939563365,
2938
+ "loss": 0.1411,
2939
+ "step": 414
2940
+ },
2941
+ {
2942
+ "epoch": 0.9041394335511983,
2943
+ "grad_norm": 0.745570957660675,
2944
+ "learning_rate": 0.0001775473898508685,
2945
+ "loss": 0.2842,
2946
+ "step": 415
2947
+ },
2948
+ {
2949
+ "epoch": 0.906318082788671,
2950
+ "grad_norm": 0.8904745578765869,
2951
+ "learning_rate": 0.00017743804822748345,
2952
+ "loss": 0.3217,
2953
+ "step": 416
2954
+ },
2955
+ {
2956
+ "epoch": 0.9084967320261438,
2957
+ "grad_norm": 0.8730976581573486,
2958
+ "learning_rate": 0.0001773284748527087,
2959
+ "loss": 0.3403,
2960
+ "step": 417
2961
+ },
2962
+ {
2963
+ "epoch": 0.9106753812636166,
2964
+ "grad_norm": 0.7911598086357117,
2965
+ "learning_rate": 0.00017721867005446806,
2966
+ "loss": 0.2731,
2967
+ "step": 418
2968
+ },
2969
+ {
2970
+ "epoch": 0.9128540305010894,
2971
+ "grad_norm": 0.6702750325202942,
2972
+ "learning_rate": 0.00017710863416137805,
2973
+ "loss": 0.2073,
2974
+ "step": 419
2975
+ },
2976
+ {
2977
+ "epoch": 0.9150326797385621,
2978
+ "grad_norm": 0.5198416113853455,
2979
+ "learning_rate": 0.00017699836750274662,
2980
+ "loss": 0.129,
2981
+ "step": 420
2982
+ },
2983
+ {
2984
+ "epoch": 0.9172113289760349,
2985
+ "grad_norm": 0.6400766372680664,
2986
+ "learning_rate": 0.00017688787040857245,
2987
+ "loss": 0.1682,
2988
+ "step": 421
2989
+ },
2990
+ {
2991
+ "epoch": 0.9193899782135077,
2992
+ "grad_norm": 0.7851924896240234,
2993
+ "learning_rate": 0.00017677714320954378,
2994
+ "loss": 0.221,
2995
+ "step": 422
2996
+ },
2997
+ {
2998
+ "epoch": 0.9215686274509803,
2999
+ "grad_norm": 0.7246972918510437,
3000
+ "learning_rate": 0.0001766661862370376,
3001
+ "loss": 0.2438,
3002
+ "step": 423
3003
+ },
3004
+ {
3005
+ "epoch": 0.9237472766884531,
3006
+ "grad_norm": 0.7575098872184753,
3007
+ "learning_rate": 0.00017655499982311847,
3008
+ "loss": 0.2633,
3009
+ "step": 424
3010
+ },
3011
+ {
3012
+ "epoch": 0.9259259259259259,
3013
+ "grad_norm": 0.902695894241333,
3014
+ "learning_rate": 0.0001764435843005376,
3015
+ "loss": 0.3567,
3016
+ "step": 425
3017
+ },
3018
+ {
3019
+ "epoch": 0.9281045751633987,
3020
+ "grad_norm": 0.7910832762718201,
3021
+ "learning_rate": 0.00017633194000273188,
3022
+ "loss": 0.2578,
3023
+ "step": 426
3024
+ },
3025
+ {
3026
+ "epoch": 0.9302832244008714,
3027
+ "grad_norm": 0.7221683263778687,
3028
+ "learning_rate": 0.00017622006726382287,
3029
+ "loss": 0.2075,
3030
+ "step": 427
3031
+ },
3032
+ {
3033
+ "epoch": 0.9324618736383442,
3034
+ "grad_norm": 0.7584638595581055,
3035
+ "learning_rate": 0.00017610796641861581,
3036
+ "loss": 0.2313,
3037
+ "step": 428
3038
+ },
3039
+ {
3040
+ "epoch": 0.934640522875817,
3041
+ "grad_norm": 0.6272245645523071,
3042
+ "learning_rate": 0.00017599563780259858,
3043
+ "loss": 0.1876,
3044
+ "step": 429
3045
+ },
3046
+ {
3047
+ "epoch": 0.9368191721132898,
3048
+ "grad_norm": 0.8224185705184937,
3049
+ "learning_rate": 0.0001758830817519407,
3050
+ "loss": 0.2558,
3051
+ "step": 430
3052
+ },
3053
+ {
3054
+ "epoch": 0.9389978213507625,
3055
+ "grad_norm": 0.7095481157302856,
3056
+ "learning_rate": 0.00017577029860349233,
3057
+ "loss": 0.2256,
3058
+ "step": 431
3059
+ },
3060
+ {
3061
+ "epoch": 0.9411764705882353,
3062
+ "grad_norm": 0.7715668678283691,
3063
+ "learning_rate": 0.00017565728869478337,
3064
+ "loss": 0.2483,
3065
+ "step": 432
3066
+ },
3067
+ {
3068
+ "epoch": 0.9433551198257081,
3069
+ "grad_norm": 0.905522882938385,
3070
+ "learning_rate": 0.00017554405236402222,
3071
+ "loss": 0.2525,
3072
+ "step": 433
3073
+ },
3074
+ {
3075
+ "epoch": 0.9455337690631809,
3076
+ "grad_norm": 0.6268091797828674,
3077
+ "learning_rate": 0.00017543058995009503,
3078
+ "loss": 0.1703,
3079
+ "step": 434
3080
+ },
3081
+ {
3082
+ "epoch": 0.9477124183006536,
3083
+ "grad_norm": 0.730185329914093,
3084
+ "learning_rate": 0.0001753169017925644,
3085
+ "loss": 0.2187,
3086
+ "step": 435
3087
+ },
3088
+ {
3089
+ "epoch": 0.9498910675381264,
3090
+ "grad_norm": 0.7279319763183594,
3091
+ "learning_rate": 0.00017520298823166873,
3092
+ "loss": 0.2584,
3093
+ "step": 436
3094
+ },
3095
+ {
3096
+ "epoch": 0.9520697167755992,
3097
+ "grad_norm": 0.7050124406814575,
3098
+ "learning_rate": 0.00017508884960832076,
3099
+ "loss": 0.1723,
3100
+ "step": 437
3101
+ },
3102
+ {
3103
+ "epoch": 0.954248366013072,
3104
+ "grad_norm": 0.7544010281562805,
3105
+ "learning_rate": 0.000174974486264107,
3106
+ "loss": 0.1899,
3107
+ "step": 438
3108
+ },
3109
+ {
3110
+ "epoch": 0.9564270152505446,
3111
+ "grad_norm": 0.8714267015457153,
3112
+ "learning_rate": 0.00017485989854128627,
3113
+ "loss": 0.2518,
3114
+ "step": 439
3115
+ },
3116
+ {
3117
+ "epoch": 0.9586056644880174,
3118
+ "grad_norm": 0.7128406167030334,
3119
+ "learning_rate": 0.00017474508678278915,
3120
+ "loss": 0.1832,
3121
+ "step": 440
3122
+ },
3123
+ {
3124
+ "epoch": 0.9607843137254902,
3125
+ "grad_norm": 0.7446244955062866,
3126
+ "learning_rate": 0.00017463005133221645,
3127
+ "loss": 0.2089,
3128
+ "step": 441
3129
+ },
3130
+ {
3131
+ "epoch": 0.9629629629629629,
3132
+ "grad_norm": 0.7556454539299011,
3133
+ "learning_rate": 0.00017451479253383857,
3134
+ "loss": 0.2327,
3135
+ "step": 442
3136
+ },
3137
+ {
3138
+ "epoch": 0.9651416122004357,
3139
+ "grad_norm": 0.5932292938232422,
3140
+ "learning_rate": 0.00017439931073259427,
3141
+ "loss": 0.1094,
3142
+ "step": 443
3143
+ },
3144
+ {
3145
+ "epoch": 0.9673202614379085,
3146
+ "grad_norm": 0.909900426864624,
3147
+ "learning_rate": 0.00017428360627408978,
3148
+ "loss": 0.2175,
3149
+ "step": 444
3150
+ },
3151
+ {
3152
+ "epoch": 0.9694989106753813,
3153
+ "grad_norm": 0.7743591666221619,
3154
+ "learning_rate": 0.00017416767950459766,
3155
+ "loss": 0.1818,
3156
+ "step": 445
3157
+ },
3158
+ {
3159
+ "epoch": 0.971677559912854,
3160
+ "grad_norm": 0.7306420207023621,
3161
+ "learning_rate": 0.0001740515307710557,
3162
+ "loss": 0.1957,
3163
+ "step": 446
3164
+ },
3165
+ {
3166
+ "epoch": 0.9738562091503268,
3167
+ "grad_norm": 0.5480270981788635,
3168
+ "learning_rate": 0.00017393516042106603,
3169
+ "loss": 0.1477,
3170
+ "step": 447
3171
+ },
3172
+ {
3173
+ "epoch": 0.9760348583877996,
3174
+ "grad_norm": 0.7661142945289612,
3175
+ "learning_rate": 0.000173818568802894,
3176
+ "loss": 0.2177,
3177
+ "step": 448
3178
+ },
3179
+ {
3180
+ "epoch": 0.9782135076252724,
3181
+ "grad_norm": 0.8411223292350769,
3182
+ "learning_rate": 0.00017370175626546728,
3183
+ "loss": 0.2104,
3184
+ "step": 449
3185
+ },
3186
+ {
3187
+ "epoch": 0.9803921568627451,
3188
+ "grad_norm": 0.816074013710022,
3189
+ "learning_rate": 0.00017358472315837447,
3190
+ "loss": 0.2349,
3191
+ "step": 450
3192
+ },
3193
+ {
3194
+ "epoch": 0.9825708061002179,
3195
+ "grad_norm": 1.0009855031967163,
3196
+ "learning_rate": 0.00017346746983186442,
3197
+ "loss": 0.2917,
3198
+ "step": 451
3199
+ },
3200
+ {
3201
+ "epoch": 0.9847494553376906,
3202
+ "grad_norm": 0.7690507769584656,
3203
+ "learning_rate": 0.00017334999663684504,
3204
+ "loss": 0.2216,
3205
+ "step": 452
3206
+ },
3207
+ {
3208
+ "epoch": 0.9869281045751634,
3209
+ "grad_norm": 0.7864702939987183,
3210
+ "learning_rate": 0.00017323230392488222,
3211
+ "loss": 0.2601,
3212
+ "step": 453
3213
+ },
3214
+ {
3215
+ "epoch": 0.9891067538126361,
3216
+ "grad_norm": 0.8309422731399536,
3217
+ "learning_rate": 0.00017311439204819874,
3218
+ "loss": 0.2257,
3219
+ "step": 454
3220
+ },
3221
+ {
3222
+ "epoch": 0.9912854030501089,
3223
+ "grad_norm": 0.7395288944244385,
3224
+ "learning_rate": 0.00017299626135967343,
3225
+ "loss": 0.1859,
3226
+ "step": 455
3227
+ },
3228
+ {
3229
+ "epoch": 0.9934640522875817,
3230
+ "grad_norm": 0.6524999737739563,
3231
+ "learning_rate": 0.00017287791221283984,
3232
+ "loss": 0.1523,
3233
+ "step": 456
3234
+ },
3235
+ {
3236
+ "epoch": 0.9956427015250545,
3237
+ "grad_norm": 0.6195773482322693,
3238
+ "learning_rate": 0.00017275934496188534,
3239
+ "loss": 0.1307,
3240
+ "step": 457
3241
+ },
3242
+ {
3243
+ "epoch": 0.9978213507625272,
3244
+ "grad_norm": 0.8236491084098816,
3245
+ "learning_rate": 0.00017264055996165007,
3246
+ "loss": 0.2214,
3247
+ "step": 458
3248
+ },
3249
+ {
3250
+ "epoch": 1.0,
3251
+ "grad_norm": 0.5916262865066528,
3252
+ "learning_rate": 0.00017252155756762575,
3253
+ "loss": 0.1633,
3254
+ "step": 459
3255
+ }
3256
+ ],
3257
+ "logging_steps": 1,
3258
+ "max_steps": 1836,
3259
+ "num_input_tokens_seen": 0,
3260
+ "num_train_epochs": 4,
3261
+ "save_steps": 459,
3262
+ "total_flos": 1.1104996358828851e+17,
3263
+ "train_batch_size": 2,
3264
+ "trial_name": null,
3265
+ "trial_params": null
3266
+ }
checkpoint-459/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:56eeec319c5500d881c83ddf7f3e737b7843c548db9958907577f93d03ba7823
3
+ size 5816
checkpoint-918/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: openlm-research/open_llama_3b_v2
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.10.0
checkpoint-918/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "openlm-research/open_llama_3b_v2",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 16,
14
+ "lora_dropout": 0.0,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "q_proj",
24
+ "v_proj",
25
+ "k_proj",
26
+ "up_proj",
27
+ "gate_proj",
28
+ "down_proj",
29
+ "o_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
checkpoint-918/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:66c077041d2bd55d117bdeb5140d2fe925df1c1b8672e885c909dd1f13368840
3
+ size 50899792
checkpoint-918/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9062004d0d48ed3f7ab85d455e8d65d54e33dcd839b56c0126ae26a1459fc29b
3
+ size 25871876
checkpoint-918/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5c0fcc11abd20f1a9174bbd06b5f2f8ccad20881dcf76721a16310a896cefc52
3
+ size 15728
checkpoint-918/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1bc2c0266830e2f380ad8aceb33cfde1823ae161760b7a73c6ca56f40d400644
3
+ size 15728
checkpoint-918/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a920727f161e0d35ff28f876fe19f4a4caee9243bc910ef1d84d28ef8f7dbe2e
3
+ size 15728
checkpoint-918/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9f56d07ea54e1bb8aef48d14cac39ca9512427d91cb8094fd820e31507117d9e
3
+ size 15728
checkpoint-918/rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6f3ca4f825f4f74d51df84d275f470905817740a9b124452305129545b5b89b0
3
+ size 15728
checkpoint-918/rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b33c7fd2a7fe36132e45f5a23c5fbb81ffc3e66651b099f11de79c4a8b10446f
3
+ size 15728
checkpoint-918/rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5859d294a67360676b74ea53ce57de6b9d145fb1da5e19c7b80d0bd9ebecbb97
3
+ size 15728
checkpoint-918/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1c89bd40f22c5bbadbe6722093d08dd165870f47389735f80dfaf961199ba106
3
+ size 1064