--- license: apache-2.0 library_name: peft tags: - generated_from_trainer base_model: openlm-research/open_llama_3b_v2 model-index: - name: outputs/lora-out results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.0` ```yaml base_model: openlm-research/open_llama_3b_v2 model_type: LlamaForCausalLM tokenizer_type: LlamaTokenizer load_in_8bit: false load_in_4bit: true strict: false push_dataset_to_hub: datasets: - path: "./raft_oracle_context_alpaca.json" type: alpaca dataset_prepared_path: ./dataset-pre val_set_size: 0.02 adapter: lora lora_model_dir: sequence_len: 1024 sample_packing: true lora_r: 8 lora_alpha: 16 lora_dropout: 0.0 lora_target_modules: - gate_proj - down_proj - up_proj - q_proj - v_proj - k_proj - o_proj lora_fan_in_fan_out: wandb_project: wandb_entity: wandb_watch: wandb_name: wandb_log_model: output_dir: ./outputs/lora-out gradient_accumulation_steps: 1 micro_batch_size: 2 num_epochs: 4 optimizer: adamw_bnb_8bit torchdistx_path: lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: false fp16: true tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true gptq_groupsize: s2_attention: gptq_model_v1: warmup_steps: 20 evals_per_epoch: 4 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.1 fsdp: fsdp_config: special_tokens: bos_token: "" eos_token: "" unk_token: "" ```

# outputs/lora-out This model is a fine-tuned version of [openlm-research/open_llama_3b_v2](https://huggingface.co/openlm-research/open_llama_3b_v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4426 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 7 - total_train_batch_size: 14 - total_eval_batch_size: 14 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 20 - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.9628 | 0.0022 | 1 | 1.9150 | | 0.5816 | 0.2505 | 115 | 0.6157 | | 0.3604 | 0.5011 | 230 | 0.4307 | | 0.2598 | 0.7516 | 345 | 0.3558 | | 0.2227 | 1.0022 | 460 | 0.3434 | | 0.1381 | 1.2266 | 575 | 0.3376 | | 0.0718 | 1.4771 | 690 | 0.3372 | | 0.0684 | 1.7277 | 805 | 0.3608 | | 0.0817 | 1.9782 | 920 | 0.3663 | | 0.0315 | 2.2004 | 1035 | 0.3888 | | 0.0331 | 2.4510 | 1150 | 0.4003 | | 0.0222 | 2.7015 | 1265 | 0.4145 | | 0.0222 | 2.9521 | 1380 | 0.4216 | | 0.0166 | 3.1743 | 1495 | 0.4330 | | 0.017 | 3.4248 | 1610 | 0.4391 | | 0.0142 | 3.6754 | 1725 | 0.4426 | ### Framework versions - PEFT 0.10.0 - Transformers 4.40.2 - Pytorch 2.1.2+cu118 - Datasets 2.19.1 - Tokenizers 0.19.1