--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - dair-ai/emotion metrics: - accuracy - f1 base_model: distilbert-base-uncased model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: type: text-classification name: Text Classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - type: accuracy value: 0.9375 name: Accuracy - type: f1 value: 0.937890467332837 name: F1 - task: type: text-classification name: Text Classification dataset: name: dair-ai/emotion type: dair-ai/emotion config: split split: test metrics: - type: accuracy value: 0.93 name: Accuracy verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNTExYzEzMWNmYTNlYmI0NWNjYTIwMzU3MmUyYmY0ZDZjMjQwOTMzYWMwOTZiY2U4YTA2ZDE0NmM2YzNlMzNkZiIsInZlcnNpb24iOjF9.rwu31KKjXkNu7uVA-vxi4NX8Fd2cJrnAmWbIIt174dmi24nlB56g7IDBfTrGzFdnMzkCuDpLng8pnvXFoN3ZCg - type: f1 value: 0.8869023464973423 name: F1 Macro verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNzI0NjEzNmEwM2VjNTg0MjY2ZmYwZTA0ZGJkOTI2ZWFlNTUxNzA1ZGNkNzNhZGQ1NGZlZTVhZGY4ZGUwZjc5YyIsInZlcnNpb24iOjF9.PLxM2vSrYDzbdKVaK3QqI_J8ujKvTUfpSfQmC-MsHNgTw7329UaiROWhe1bhadQcgNolLgtwlLFhXyR593fGAA - type: f1 value: 0.93 name: F1 Micro verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNDFlMGY1ZDljZTQ3NzI5N2FmNTFkOWY0N2EzNTk5MGZhOWM4MDVkYjQ2NDk1NTU3MWZiMDBhNTc4YWE2MTFkOSIsInZlcnNpb24iOjF9.5wCoKKKKl0p9S0nAN2OuiPe3c9VnBmTHnJjWWdHgBmcbJ2CrVjZzejUXnfpsuaVJSxSmOZfdI6h18z_fQRgqAQ - type: f1 value: 0.9300315549555708 name: F1 Weighted verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZjcxNGMyNWE5ODg3MDczMzM5ZjE0YmU3YTRmNTM4MTQwYjhmMDcxOGU1NGU4YTBmZGI5NmM5OTRiY2VhYzQ3ZCIsInZlcnNpb24iOjF9.l1MbXmlI8txam4EttXSOWaIgfN9sKe0ZBKc_TXwWre8DNgPFVwVD4jWeQxlMRC0LtWIL5fIqEdv8qj5DqVz1BQ - type: precision value: 0.892405250997362 name: Precision Macro verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNjg4Y2U3ODNkZjRkMWQ1YzZjMWUzYWRkOTk1YzJkNmU1NmVkZGNjZDA5NmQzNmVkNDExNzBlZDZiZDg1YWU2YSIsInZlcnNpb24iOjF9.WoctTcjRNIbgZo4pqUQVbKmOc0iudqmqO9ABr043llfHLIWe8ZjMyFek3OBUTgw7wVe35UDNGeRc308OxS7CAQ - type: precision value: 0.93 name: Precision Micro verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOTczZGUwMTQ1MWY2NGE4YWU0NWU3YjA0MzdhMGUyYWUzYjAxOTgzYmYwNmNhYWIxZTBhODE4YjMyOTc5NDAwYSIsInZlcnNpb24iOjF9.Iy2em6yVS3K4izKHRhnap2RWHgZQ5hup8nmtNVmb7avz5x3HWUnzwAUq_EsWht_7Hf59YUPuWW_xv9EZXZYVDQ - type: precision value: 0.9314726605632766 name: Precision Weighted verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMDljOTNmMjZjNWFkZGQzNTIxNzZhNTRjYTEwN2E0MjdmYWY2MzdjMmUyMzZlZGQzZmFlMDJiNmIxMDUxYTM1MyIsInZlcnNpb24iOjF9.S2ERnUMdG3WZyRIpYY4ZOPPMdy3VvUVcNA3sQ8uij5S-1upDs5DeSxqgXKGggxANkj1lSOda8sDSLYgswTV4DQ - type: recall value: 0.8858832612260938 name: Recall Macro verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYjllMGU4MmRiYjljNDQ0NTEwOGIzOTMzMDI1NThjZDdhYjc0OTNmYTcwODU0ZTNmYjEwOWQ4Mjg0MDAyNjNkOSIsInZlcnNpb24iOjF9.yl3TFQCdTFGGdxbDdTFK4yAY8segyexnvqY0uViW9bEQsfXVgP-lE3veKnsakAKo4HD6nlthHUxtgJLZhYcfAg - type: recall value: 0.93 name: Recall Micro verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYWZkNDg2YjdiZTMzMDljNWNiMzk0MzQ2MjA0NzBjMzkwMWE3OWI1YTgwNTkxODhjYzFkMjQ2Yjg4ZjkyZDE1ZCIsInZlcnNpb24iOjF9.I76FPjzyPTVxC8w5ZgDOnsGOx1weTzizDujT98WPGO3AnibtlJJJhPeQdBKxe80LGE7QpjLx0e-R9UvjpnJmAQ - type: recall value: 0.93 name: Recall Weighted verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOGY2ZmI1OWU3YWVjMDM3NjZjNjhlNWZiMDhlMzA3MDU0ZjExYTA5OTA1ZDBjY2YwYTA0NDE2ODY1ZGIwYmU2OCIsInZlcnNpb24iOjF9.9NACQL-gIUD57HmB62GIo5nqJJVy9k_iUo72onHCyfpCa9K0XKhi_UoKJNoV5htumHD2zKKucwUx1p8X17bUAg - type: loss value: 0.1600879579782486 name: loss verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMTYzNzkwMWY1ZDMwMTVhN2Y4NDkwNTgyYWNjNjkwMTIwYTNjZjY0N2M0MWM5NjNlNjA3ZWJmY2VhNTQ2MGUyOCIsInZlcnNpb24iOjF9.YYmdyZk5D8B0Fb7M2ysyLBGdSVxGOSgWGfXhz7h0UZaeLijo04IiFQfNWiYNtd_UZ2QcpMeZtkuWdMK8ZHPxBQ --- # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1448 - Accuracy: 0.9375 - F1: 0.9379 The notebook used to fine-tune this model may be found [HERE](https://www.kaggle.com/marcoloureno/distilbert-base-uncased-finetuned-emotion). ## Model description DistilBERT is a transformers model, smaller and faster than BERT, which was pretrained on the same corpus in a self-supervised fashion, using the BERT base model as a teacher. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts using the BERT base model. More precisely, it was pretrained with three objectives: - Distillation loss: the model was trained to return the same probabilities as the BERT base model. - Masked language modeling (MLM): this is part of the original training loss of the BERT base model. When taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. - Cosine embedding loss: the model was also trained to generate hidden states as close as possible as the BERT base model. This way, the model learns the same inner representation of the English language than its teacher model, while being faster for inference or downstream tasks. ## Intended uses & limitations [Emotion](https://huggingface.co/datasets/dair-ai/emotion) is a dataset of English Twitter messages with six basic emotions: anger, fear, joy, love, sadness, and surprise. This dataset was developed for the paper entitled "CARER: Contextualized Affect Representations for Emotion Recognition" (Saravia et al.) through noisy labels, annotated via distant supervision as in the paper"Twitter sentiment classification using distant supervision" (Go et al). The DistilBERT model was fine-tuned to this dataset, allowing for the classification of sentences into one of the six basic emotions (anger, fear, joy, love, sadness, and surprise). ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.5337 | 1.0 | 250 | 0.1992 | 0.927 | 0.9262 | | 0.1405 | 2.0 | 500 | 0.1448 | 0.9375 | 0.9379 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3