ethangclark commited on
Commit
02c60c5
·
verified ·
1 Parent(s): 6efa3db

End of training

Browse files
README.md CHANGED
@@ -16,15 +16,6 @@ should probably proofread and complete it, then remove this comment. -->
16
  # layoutlm-funsd
17
 
18
  This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
19
- It achieves the following results on the evaluation set:
20
- - Loss: 1.0370
21
- - Answer: {'precision': 0.39444995044598613, 'recall': 0.4919653893695921, 'f1': 0.43784378437843785, 'number': 809}
22
- - Header: {'precision': 0.26548672566371684, 'recall': 0.25210084033613445, 'f1': 0.25862068965517243, 'number': 119}
23
- - Question: {'precision': 0.5051546391752577, 'recall': 0.644131455399061, 'f1': 0.566240198101527, 'number': 1065}
24
- - Overall Precision: 0.4492
25
- - Overall Recall: 0.5590
26
- - Overall F1: 0.4981
27
- - Overall Accuracy: 0.6347
28
 
29
  ## Model description
30
 
@@ -50,32 +41,10 @@ The following hyperparameters were used during training:
50
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
  - lr_scheduler_type: linear
52
  - num_epochs: 15
53
- - mixed_precision_training: Native AMP
54
-
55
- ### Training results
56
-
57
- | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
58
- |:-------------:|:-----:|:----:|:---------------:|:-------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
59
- | 1.7638 | 1.0 | 10 | 1.5767 | {'precision': 0.02685284640171858, 'recall': 0.030902348578491966, 'f1': 0.028735632183908046, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.23186119873817035, 'recall': 0.13802816901408452, 'f1': 0.17304296645085343, 'number': 1065} | 0.1099 | 0.0863 | 0.0967 | 0.3463 |
60
- | 1.4838 | 2.0 | 20 | 1.3817 | {'precision': 0.20173267326732675, 'recall': 0.40296662546353523, 'f1': 0.2688659793814433, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.27599486521181, 'recall': 0.40375586854460094, 'f1': 0.3278688524590164, 'number': 1065} | 0.2365 | 0.3793 | 0.2913 | 0.4223 |
61
- | 1.2933 | 3.0 | 30 | 1.2178 | {'precision': 0.22845691382765532, 'recall': 0.4227441285537701, 'f1': 0.29661751951431053, 'number': 809} | {'precision': 0.1076923076923077, 'recall': 0.058823529411764705, 'f1': 0.07608695652173912, 'number': 119} | {'precision': 0.3385542168674699, 'recall': 0.5276995305164319, 'f1': 0.4124770642201835, 'number': 1065} | 0.2827 | 0.4571 | 0.3494 | 0.4903 |
62
- | 1.1591 | 4.0 | 40 | 1.1134 | {'precision': 0.2775800711743772, 'recall': 0.4820766378244747, 'f1': 0.3523035230352303, 'number': 809} | {'precision': 0.27848101265822783, 'recall': 0.18487394957983194, 'f1': 0.2222222222222222, 'number': 119} | {'precision': 0.37922077922077924, 'recall': 0.5483568075117371, 'f1': 0.4483685220729367, 'number': 1065} | 0.3294 | 0.4997 | 0.3971 | 0.5555 |
63
- | 1.0602 | 5.0 | 50 | 1.0998 | {'precision': 0.2914764079147641, 'recall': 0.47342398022249693, 'f1': 0.3608101742816769, 'number': 809} | {'precision': 0.3146067415730337, 'recall': 0.23529411764705882, 'f1': 0.2692307692307692, 'number': 119} | {'precision': 0.4076227390180879, 'recall': 0.5924882629107981, 'f1': 0.4829697665518562, 'number': 1065} | 0.3531 | 0.5228 | 0.4215 | 0.5676 |
64
- | 0.9666 | 6.0 | 60 | 1.2008 | {'precision': 0.3184044786564031, 'recall': 0.5624227441285538, 'f1': 0.4066130473637176, 'number': 809} | {'precision': 0.36666666666666664, 'recall': 0.18487394957983194, 'f1': 0.24581005586592175, 'number': 119} | {'precision': 0.46556233653007845, 'recall': 0.5014084507042254, 'f1': 0.4828209764918625, 'number': 1065} | 0.3835 | 0.5073 | 0.4368 | 0.5518 |
65
- | 0.9177 | 7.0 | 70 | 1.0682 | {'precision': 0.33756345177664976, 'recall': 0.4932014833127318, 'f1': 0.4008036162732296, 'number': 809} | {'precision': 0.2978723404255319, 'recall': 0.23529411764705882, 'f1': 0.2629107981220657, 'number': 119} | {'precision': 0.4583333333333333, 'recall': 0.5784037558685446, 'f1': 0.5114155251141553, 'number': 1065} | 0.3981 | 0.5233 | 0.4522 | 0.5949 |
66
- | 0.8429 | 8.0 | 80 | 1.0318 | {'precision': 0.35264227642276424, 'recall': 0.4289245982694685, 'f1': 0.3870607919687674, 'number': 809} | {'precision': 0.2909090909090909, 'recall': 0.2689075630252101, 'f1': 0.2794759825327511, 'number': 119} | {'precision': 0.4475703324808184, 'recall': 0.6572769953051644, 'f1': 0.5325218714340054, 'number': 1065} | 0.4059 | 0.5414 | 0.4640 | 0.6117 |
67
- | 0.8062 | 9.0 | 90 | 1.0339 | {'precision': 0.37058823529411766, 'recall': 0.4672435105067985, 'f1': 0.41334062329141613, 'number': 809} | {'precision': 0.275, 'recall': 0.2773109243697479, 'f1': 0.27615062761506276, 'number': 119} | {'precision': 0.4913728432108027, 'recall': 0.6150234741784038, 'f1': 0.5462885738115096, 'number': 1065} | 0.4311 | 0.5349 | 0.4774 | 0.6213 |
68
- | 0.7862 | 10.0 | 100 | 1.0501 | {'precision': 0.35284552845528455, 'recall': 0.5364647713226205, 'f1': 0.42569887199607653, 'number': 809} | {'precision': 0.3048780487804878, 'recall': 0.21008403361344538, 'f1': 0.24875621890547264, 'number': 119} | {'precision': 0.4933852140077821, 'recall': 0.5953051643192488, 'f1': 0.5395744680851065, 'number': 1065} | 0.4209 | 0.5484 | 0.4763 | 0.6103 |
69
- | 0.7206 | 11.0 | 110 | 1.0571 | {'precision': 0.3714020427112349, 'recall': 0.49443757725587145, 'f1': 0.4241781548250265, 'number': 809} | {'precision': 0.2962962962962963, 'recall': 0.2689075630252101, 'f1': 0.28193832599118945, 'number': 119} | {'precision': 0.5184893784421715, 'recall': 0.6187793427230047, 'f1': 0.5642123287671232, 'number': 1065} | 0.4442 | 0.5474 | 0.4904 | 0.6234 |
70
- | 0.7242 | 12.0 | 120 | 1.0352 | {'precision': 0.3682771194165907, 'recall': 0.49938195302843014, 'f1': 0.4239244491080797, 'number': 809} | {'precision': 0.3333333333333333, 'recall': 0.2689075630252101, 'f1': 0.29767441860465116, 'number': 119} | {'precision': 0.4966984592809978, 'recall': 0.6356807511737089, 'f1': 0.557660626029654, 'number': 1065} | 0.4354 | 0.5585 | 0.4893 | 0.6251 |
71
- | 0.6858 | 13.0 | 130 | 1.0447 | {'precision': 0.37962962962962965, 'recall': 0.5067985166872683, 'f1': 0.4340921122286925, 'number': 809} | {'precision': 0.2672413793103448, 'recall': 0.2605042016806723, 'f1': 0.26382978723404255, 'number': 119} | {'precision': 0.5022058823529412, 'recall': 0.6413145539906103, 'f1': 0.5632989690721649, 'number': 1065} | 0.4397 | 0.5640 | 0.4942 | 0.6298 |
72
- | 0.6549 | 14.0 | 140 | 1.0332 | {'precision': 0.3821892393320965, 'recall': 0.5092707045735476, 'f1': 0.43667196608373077, 'number': 809} | {'precision': 0.3263157894736842, 'recall': 0.2605042016806723, 'f1': 0.2897196261682243, 'number': 119} | {'precision': 0.5044843049327354, 'recall': 0.6338028169014085, 'f1': 0.5617977528089888, 'number': 1065} | 0.4452 | 0.5610 | 0.4964 | 0.6354 |
73
- | 0.6462 | 15.0 | 150 | 1.0370 | {'precision': 0.39444995044598613, 'recall': 0.4919653893695921, 'f1': 0.43784378437843785, 'number': 809} | {'precision': 0.26548672566371684, 'recall': 0.25210084033613445, 'f1': 0.25862068965517243, 'number': 119} | {'precision': 0.5051546391752577, 'recall': 0.644131455399061, 'f1': 0.566240198101527, 'number': 1065} | 0.4492 | 0.5590 | 0.4981 | 0.6347 |
74
-
75
 
76
  ### Framework versions
77
 
78
- - Transformers 4.38.2
79
- - Pytorch 2.2.1+cu121
80
  - Datasets 2.18.0
81
  - Tokenizers 0.15.2
 
16
  # layoutlm-funsd
17
 
18
  This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
 
 
 
 
 
 
 
 
 
19
 
20
  ## Model description
21
 
 
41
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
42
  - lr_scheduler_type: linear
43
  - num_epochs: 15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44
 
45
  ### Framework versions
46
 
47
+ - Transformers 4.39.0
48
+ - Pytorch 2.2.1
49
  - Datasets 2.18.0
50
  - Tokenizers 0.15.2
logs/events.out.tfevents.1711077848.ethanmbp.lan.714.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:dfcce9d911c5b6c7ca0da8de977eab24edd6b0a649f7562b69856707a60cb560
3
- size 10464
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6d54371f32839295b4d4758a11e1fb02697742fe95557d1997bcdfaf7b0468e5
3
+ size 15771
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:207a7b88b767ee79cc9f2f18009901834929cc2ed04fefd119abd719498b0dcf
3
  size 450558212
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:44d47fb4d81bb81cf165b696b83ee9db1fd8a00d4206d25d0efabb39198763a2
3
  size 450558212
preprocessor_config.json CHANGED
@@ -1,4 +1,16 @@
1
  {
 
 
 
 
 
 
 
 
 
 
 
 
2
  "apply_ocr": true,
3
  "do_resize": true,
4
  "image_processor_type": "LayoutLMv2ImageProcessor",
 
1
  {
2
+ "_valid_processor_keys": [
3
+ "images",
4
+ "do_resize",
5
+ "size",
6
+ "resample",
7
+ "apply_ocr",
8
+ "ocr_lang",
9
+ "tesseract_config",
10
+ "return_tensors",
11
+ "data_format",
12
+ "input_data_format"
13
+ ],
14
  "apply_ocr": true,
15
  "do_resize": true,
16
  "image_processor_type": "LayoutLMv2ImageProcessor",
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:55a66d0eec0191ab73e6094e16baaf0c1297c4a463a889d8969d8ad76ef93641
3
  size 4920
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9ddc249426746aa87fc67e93ccb4cb9c1e346b41f5e664bf12e540282111d766
3
  size 4920