ethangclark commited on
Commit
570eb07
·
verified ·
1 Parent(s): 5bd8d9b

End of training

Browse files
README.md ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: microsoft/layoutlm-base-uncased
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - funsd
8
+ model-index:
9
+ - name: layoutlm-funsd
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # layoutlm-funsd
17
+
18
+ This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 1.0370
21
+ - Answer: {'precision': 0.39444995044598613, 'recall': 0.4919653893695921, 'f1': 0.43784378437843785, 'number': 809}
22
+ - Header: {'precision': 0.26548672566371684, 'recall': 0.25210084033613445, 'f1': 0.25862068965517243, 'number': 119}
23
+ - Question: {'precision': 0.5051546391752577, 'recall': 0.644131455399061, 'f1': 0.566240198101527, 'number': 1065}
24
+ - Overall Precision: 0.4492
25
+ - Overall Recall: 0.5590
26
+ - Overall F1: 0.4981
27
+ - Overall Accuracy: 0.6347
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 3e-05
47
+ - train_batch_size: 16
48
+ - eval_batch_size: 8
49
+ - seed: 42
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: linear
52
+ - num_epochs: 15
53
+ - mixed_precision_training: Native AMP
54
+
55
+ ### Training results
56
+
57
+ | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
58
+ |:-------------:|:-----:|:----:|:---------------:|:-------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
59
+ | 1.7638 | 1.0 | 10 | 1.5767 | {'precision': 0.02685284640171858, 'recall': 0.030902348578491966, 'f1': 0.028735632183908046, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.23186119873817035, 'recall': 0.13802816901408452, 'f1': 0.17304296645085343, 'number': 1065} | 0.1099 | 0.0863 | 0.0967 | 0.3463 |
60
+ | 1.4838 | 2.0 | 20 | 1.3817 | {'precision': 0.20173267326732675, 'recall': 0.40296662546353523, 'f1': 0.2688659793814433, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.27599486521181, 'recall': 0.40375586854460094, 'f1': 0.3278688524590164, 'number': 1065} | 0.2365 | 0.3793 | 0.2913 | 0.4223 |
61
+ | 1.2933 | 3.0 | 30 | 1.2178 | {'precision': 0.22845691382765532, 'recall': 0.4227441285537701, 'f1': 0.29661751951431053, 'number': 809} | {'precision': 0.1076923076923077, 'recall': 0.058823529411764705, 'f1': 0.07608695652173912, 'number': 119} | {'precision': 0.3385542168674699, 'recall': 0.5276995305164319, 'f1': 0.4124770642201835, 'number': 1065} | 0.2827 | 0.4571 | 0.3494 | 0.4903 |
62
+ | 1.1591 | 4.0 | 40 | 1.1134 | {'precision': 0.2775800711743772, 'recall': 0.4820766378244747, 'f1': 0.3523035230352303, 'number': 809} | {'precision': 0.27848101265822783, 'recall': 0.18487394957983194, 'f1': 0.2222222222222222, 'number': 119} | {'precision': 0.37922077922077924, 'recall': 0.5483568075117371, 'f1': 0.4483685220729367, 'number': 1065} | 0.3294 | 0.4997 | 0.3971 | 0.5555 |
63
+ | 1.0602 | 5.0 | 50 | 1.0998 | {'precision': 0.2914764079147641, 'recall': 0.47342398022249693, 'f1': 0.3608101742816769, 'number': 809} | {'precision': 0.3146067415730337, 'recall': 0.23529411764705882, 'f1': 0.2692307692307692, 'number': 119} | {'precision': 0.4076227390180879, 'recall': 0.5924882629107981, 'f1': 0.4829697665518562, 'number': 1065} | 0.3531 | 0.5228 | 0.4215 | 0.5676 |
64
+ | 0.9666 | 6.0 | 60 | 1.2008 | {'precision': 0.3184044786564031, 'recall': 0.5624227441285538, 'f1': 0.4066130473637176, 'number': 809} | {'precision': 0.36666666666666664, 'recall': 0.18487394957983194, 'f1': 0.24581005586592175, 'number': 119} | {'precision': 0.46556233653007845, 'recall': 0.5014084507042254, 'f1': 0.4828209764918625, 'number': 1065} | 0.3835 | 0.5073 | 0.4368 | 0.5518 |
65
+ | 0.9177 | 7.0 | 70 | 1.0682 | {'precision': 0.33756345177664976, 'recall': 0.4932014833127318, 'f1': 0.4008036162732296, 'number': 809} | {'precision': 0.2978723404255319, 'recall': 0.23529411764705882, 'f1': 0.2629107981220657, 'number': 119} | {'precision': 0.4583333333333333, 'recall': 0.5784037558685446, 'f1': 0.5114155251141553, 'number': 1065} | 0.3981 | 0.5233 | 0.4522 | 0.5949 |
66
+ | 0.8429 | 8.0 | 80 | 1.0318 | {'precision': 0.35264227642276424, 'recall': 0.4289245982694685, 'f1': 0.3870607919687674, 'number': 809} | {'precision': 0.2909090909090909, 'recall': 0.2689075630252101, 'f1': 0.2794759825327511, 'number': 119} | {'precision': 0.4475703324808184, 'recall': 0.6572769953051644, 'f1': 0.5325218714340054, 'number': 1065} | 0.4059 | 0.5414 | 0.4640 | 0.6117 |
67
+ | 0.8062 | 9.0 | 90 | 1.0339 | {'precision': 0.37058823529411766, 'recall': 0.4672435105067985, 'f1': 0.41334062329141613, 'number': 809} | {'precision': 0.275, 'recall': 0.2773109243697479, 'f1': 0.27615062761506276, 'number': 119} | {'precision': 0.4913728432108027, 'recall': 0.6150234741784038, 'f1': 0.5462885738115096, 'number': 1065} | 0.4311 | 0.5349 | 0.4774 | 0.6213 |
68
+ | 0.7862 | 10.0 | 100 | 1.0501 | {'precision': 0.35284552845528455, 'recall': 0.5364647713226205, 'f1': 0.42569887199607653, 'number': 809} | {'precision': 0.3048780487804878, 'recall': 0.21008403361344538, 'f1': 0.24875621890547264, 'number': 119} | {'precision': 0.4933852140077821, 'recall': 0.5953051643192488, 'f1': 0.5395744680851065, 'number': 1065} | 0.4209 | 0.5484 | 0.4763 | 0.6103 |
69
+ | 0.7206 | 11.0 | 110 | 1.0571 | {'precision': 0.3714020427112349, 'recall': 0.49443757725587145, 'f1': 0.4241781548250265, 'number': 809} | {'precision': 0.2962962962962963, 'recall': 0.2689075630252101, 'f1': 0.28193832599118945, 'number': 119} | {'precision': 0.5184893784421715, 'recall': 0.6187793427230047, 'f1': 0.5642123287671232, 'number': 1065} | 0.4442 | 0.5474 | 0.4904 | 0.6234 |
70
+ | 0.7242 | 12.0 | 120 | 1.0352 | {'precision': 0.3682771194165907, 'recall': 0.49938195302843014, 'f1': 0.4239244491080797, 'number': 809} | {'precision': 0.3333333333333333, 'recall': 0.2689075630252101, 'f1': 0.29767441860465116, 'number': 119} | {'precision': 0.4966984592809978, 'recall': 0.6356807511737089, 'f1': 0.557660626029654, 'number': 1065} | 0.4354 | 0.5585 | 0.4893 | 0.6251 |
71
+ | 0.6858 | 13.0 | 130 | 1.0447 | {'precision': 0.37962962962962965, 'recall': 0.5067985166872683, 'f1': 0.4340921122286925, 'number': 809} | {'precision': 0.2672413793103448, 'recall': 0.2605042016806723, 'f1': 0.26382978723404255, 'number': 119} | {'precision': 0.5022058823529412, 'recall': 0.6413145539906103, 'f1': 0.5632989690721649, 'number': 1065} | 0.4397 | 0.5640 | 0.4942 | 0.6298 |
72
+ | 0.6549 | 14.0 | 140 | 1.0332 | {'precision': 0.3821892393320965, 'recall': 0.5092707045735476, 'f1': 0.43667196608373077, 'number': 809} | {'precision': 0.3263157894736842, 'recall': 0.2605042016806723, 'f1': 0.2897196261682243, 'number': 119} | {'precision': 0.5044843049327354, 'recall': 0.6338028169014085, 'f1': 0.5617977528089888, 'number': 1065} | 0.4452 | 0.5610 | 0.4964 | 0.6354 |
73
+ | 0.6462 | 15.0 | 150 | 1.0370 | {'precision': 0.39444995044598613, 'recall': 0.4919653893695921, 'f1': 0.43784378437843785, 'number': 809} | {'precision': 0.26548672566371684, 'recall': 0.25210084033613445, 'f1': 0.25862068965517243, 'number': 119} | {'precision': 0.5051546391752577, 'recall': 0.644131455399061, 'f1': 0.566240198101527, 'number': 1065} | 0.4492 | 0.5590 | 0.4981 | 0.6347 |
74
+
75
+
76
+ ### Framework versions
77
+
78
+ - Transformers 4.38.2
79
+ - Pytorch 2.2.1+cu121
80
+ - Datasets 2.18.0
81
+ - Tokenizers 0.15.2
logs/events.out.tfevents.1710902016.6e1e6ed48043.12592.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:c10060ef85fd095cae3a70437b0ab3d65471de1f5f22a58647efd741dccb24fd
3
- size 14669
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a33a7bd831bf0cdba75a569d6353fe80f6a4dc7cc625b29ffc3a90842595d07f
3
+ size 15738
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:42de91b95e3229c5e56cb01f34eff0f84cc583965f975ccfa6233be4a52f2f6f
3
  size 450558212
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cdcdec7a2711b4f830f7c8efb018a82a0796bc43132f61110e550ef2106e35c4
3
  size 450558212
preprocessor_config.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "apply_ocr": true,
3
+ "do_resize": true,
4
+ "image_processor_type": "LayoutLMv2ImageProcessor",
5
+ "ocr_lang": null,
6
+ "processor_class": "LayoutLMv2Processor",
7
+ "resample": 2,
8
+ "size": {
9
+ "height": 224,
10
+ "width": 224
11
+ },
12
+ "tesseract_config": ""
13
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "additional_special_tokens": [],
45
+ "apply_ocr": false,
46
+ "clean_up_tokenization_spaces": true,
47
+ "cls_token": "[CLS]",
48
+ "cls_token_box": [
49
+ 0,
50
+ 0,
51
+ 0,
52
+ 0
53
+ ],
54
+ "do_basic_tokenize": true,
55
+ "do_lower_case": true,
56
+ "mask_token": "[MASK]",
57
+ "model_max_length": 512,
58
+ "never_split": null,
59
+ "only_label_first_subword": true,
60
+ "pad_token": "[PAD]",
61
+ "pad_token_box": [
62
+ 0,
63
+ 0,
64
+ 0,
65
+ 0
66
+ ],
67
+ "pad_token_label": -100,
68
+ "processor_class": "LayoutLMv2Processor",
69
+ "sep_token": "[SEP]",
70
+ "sep_token_box": [
71
+ 1000,
72
+ 1000,
73
+ 1000,
74
+ 1000
75
+ ],
76
+ "strip_accents": null,
77
+ "tokenize_chinese_chars": true,
78
+ "tokenizer_class": "LayoutLMv2Tokenizer",
79
+ "unk_token": "[UNK]"
80
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff