--- library_name: stable-baselines3 tags: - CartPole-v1 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - metrics: - type: mean_reward value: 181.08 +/- 95.35 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 license: mit --- # **A2C** Agent playing **CartPole-v1** This is a trained model of a **A2C** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo
SB3: https://github.com/DLR-RM/stable-baselines3
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo a2c --env CartPole-v1 -orga zpbrent -f logs/ python -m rl_zoo3.enjoy --algo a2c --env CartPole-v1 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo a2c --env CartPole-v1 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo a2c --env CartPole-v1 -f logs/ -orga zpbrent ``` ## Hyperparameters ```python OrderedDict([('ent_coef', 1e-05), ('gamma', 0.995), ('learning_rate', 'lin_0.00083'), ('n_envs', 8), ('n_steps', 5), ('n_timesteps', 200000.0), ('policy', 'MlpPolicy'), ('normalize', False)]) ```