--- license: mit datasets: - flwrlabs/code-alpaca-20k language: - en metrics: - accuracy base_model: - Qwen/Qwen2.5-Coder-0.5B-Instruct pipeline_tag: text-generation library_name: peft tags: - text-generation-inference - code --- # Model Card for FlowerTune-Qwen2.5-Coder-0.5B-Instruct-PEFT ![Training Loss](./train_loss.png) ## Evaluation Results (Accuracy) - **MBPP**: 25.60 % - **HumanEval**: 37.81 % - **MultiPL-E (JS)**: 41.00 % - **MultiPL-E (C++)**: 32.92 % - **Average**: 34.34 % ## Model Details This PEFT adapter has been trained by using [Flower](https://flower.ai/), a friendly federated AI framework. The adapter and benchmark results have been submitted to the [FlowerTune LLM Code Leaderboard](https://flower.ai/benchmarks/llm-leaderboard/code/). Please check the following GitHub project for details on how to reproduce training and evaluation steps: [https://github.com/ethicalabs-ai/FlowerTune-Qwen2.5-Coder-0.5B-Instruct/](https://github.com/ethicalabs-ai/FlowerTune-Qwen2.5-Coder-0.5B-Instruct/) ## How to Get Started with the Model Use this model as: ``` from peft import PeftModel from transformers import AutoModelForCausalLM base_model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-Coder-0.5B-Instruct") model = PeftModel.from_pretrained(base_model, "ethicalabs/FlowerTune-Qwen2.5-Coder-0.5B-Instruct") ``` ## Communication Budget 8766.51 MB Megabytes ## Virtual Machine Details For this experiment, I utilized [CUDO Compute](https://www.cudocompute.com/?via=flowertune-llm) as the GPU compute provider. | **Component** | **Specification** | |---------------|----------------------| | **GPU** | 1 × RTX A4000 16 GB | | **vCPUs** | 4 | | **CPU** | AMD EPYC (Milan) | | **Memory** | 16 GB | ## Cost Breakdown ### Compute Costs | **Component** | **Details** | **Cost/hr** | |---------------|---------------|-------------| | vCPUs | 4 cores | $0.0088/hr | | Memory | 16 GB | $0.056/hr | | GPU | 1 × RTX A4000 | $0.25/hr | ### Storage Costs | **Component** | **Details** | **Cost/hr** | |------------------|-------------|-------------| | Boot Disk Size | 70 GB | $0.0077/hr | ### Network Costs | **Component** | **Details** | **Cost/hr** | |-----------------------|-------------|-------------| | Public IPv4 Address | N/A | $0.005/hr | ### Total Cost | **Total Cost/hr** | |-------------------| | **$0.3275/hr** | ### Simulation Details | **Parameter** | **Value** | |--------------------|------------------------| | **Runtime** | 1924.52 seconds (00:32:04) | | **Simulation Cost**| **$0.18** | ### Framework versions - PEFT 0.14.0 - Flower 1.13.1