Transformers
A2N
super-image
image-super-resolution
Inference Endpoints
Eugene Siow commited on
Commit
7490281
1 Parent(s): 25c0a21

Initial commit.

Browse files
README.md ADDED
@@ -0,0 +1,135 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - super-image
5
+ - image-super-resolution
6
+ datasets:
7
+ - div2k
8
+ metrics:
9
+ - pnsr
10
+ - ssim
11
+ ---
12
+ # Attention in Attention Network for Image Super-Resolution (A2N)
13
+ A2N model pre-trained on DIV2K (800 images training, augmented to 4000 images, 100 images validation) for 2x, 3x and 4x image super resolution. It was introduced in the paper [Attention in Attention Network for Image Super-Resolution](https://arxiv.org/abs/2104.09497) by Chen et al. (2021) and first released in [this repository](https://github.com/haoyuc/A2N).
14
+
15
+ The goal of image super resolution is to restore a high resolution (HR) image from a single low resolution (LR) image. The image below shows the ground truth (HR), the bicubic upscaling x2 and model upscaling x2.
16
+
17
+ ![Comparing Bicubic upscaling against the models x2 upscaling on Set5 Image 4](images/a2n_4_4_compare.png "Comparing Bicubic upscaling against the models x2 upscaling on Set5 Image 4")
18
+ ## Model description
19
+ The A2N model proposes an attention in attention network (A2N) for highly accurate image SR. Specifically, the A2N consists of a non-attention branch and a coupling attention branch. Attention dropout module is proposed to generate dynamic attention weights for these two branches based on input features that can suppress unwanted attention adjustments. This allows attention modules to specialize to beneficial examples without otherwise penalties and thus greatly improve the capacity of the attention network with little parameter overhead.
20
+
21
+ More importantly the model is lightweight and fast to train (~1.5m parameters, ~4mb).
22
+ ## Intended uses & limitations
23
+ You can use the pre-trained models for upscaling your images 2x, 3x and 4x. You can also use the trainer to train a model on your own dataset.
24
+ ### How to use
25
+ The model can be used with the [super_image](https://github.com/eugenesiow/super-image) library:
26
+ ```bash
27
+ pip install super-image
28
+ ```
29
+ Here is how to use a pre-trained model to upscale your image:
30
+ ```python
31
+ from super_image import A2nModel, ImageLoader
32
+ from PIL import Image
33
+ import requests
34
+
35
+ url = 'https://paperswithcode.com/media/datasets/Set5-0000002728-07a9793f_zA3bDjj.jpg'
36
+ image = Image.open(requests.get(url, stream=True).raw)
37
+
38
+ model = A2nModel.from_pretrained('eugenesiow/a2n', scale=2) # scale 2, 3 and 4 models available
39
+ inputs = ImageLoader.load_image(image)
40
+ preds = model(inputs)
41
+
42
+ ImageLoader.save_image(preds, './scaled_2x.png') # save the output 2x scaled image to `./scaled_2x.png`
43
+ ImageLoader.save_compare(inputs, preds, './scaled_2x_compare.png') # save an output comparing the super-image with a bicubic scaling
44
+ ```
45
+ ## Training data
46
+ The models for 2x, 3x and 4x image super resolution were pretrained on [DIV2K](https://data.vision.ee.ethz.ch/cvl/DIV2K/), a dataset of 800 high-quality (2K resolution) images for training, augmented to 4000 images and uses a dev set of 100 validation images (images numbered 801 to 900).
47
+ ## Training procedure
48
+ ### Preprocessing
49
+ We follow the pre-processing and training method of [Wang et al.](https://arxiv.org/abs/2104.07566).
50
+ Low Resolution (LR) images are created by using bicubic interpolation as the resizing method to reduce the size of the High Resolution (HR) images by x2, x3 and x4 times.
51
+ During training, RGB patches with size of 64×64 from the LR input are used together with their corresponding HR patches.
52
+ Data augmentation is applied to the training set in the pre-processing stage where five images are created from the four corners and center of the original image.
53
+
54
+ The following code provides some helper functions to preprocess the data.
55
+ ```python
56
+ from super_image.data import EvalDataset, TrainAugmentDataset, DatasetBuilder
57
+
58
+ DatasetBuilder.prepare(
59
+ base_path='./DIV2K/DIV2K_train_HR',
60
+ output_path='./div2k_4x_train.h5',
61
+ scale=4,
62
+ do_augmentation=True
63
+ )
64
+ DatasetBuilder.prepare(
65
+ base_path='./DIV2K/DIV2K_val_HR',
66
+ output_path='./div2k_4x_val.h5',
67
+ scale=4,
68
+ do_augmentation=False
69
+ )
70
+ train_dataset = TrainAugmentDataset('./div2k_4x_train.h5', scale=4)
71
+ val_dataset = EvalDataset('./div2k_4x_val.h5')
72
+ ```
73
+ ### Pretraining
74
+ The model was trained on GPU. The training code is provided below:
75
+ ```python
76
+ from super_image import Trainer, TrainingArguments, A2nModel, A2nConfig
77
+
78
+ training_args = TrainingArguments(
79
+ output_dir='./results', # output directory
80
+ num_train_epochs=1000, # total number of training epochs
81
+ )
82
+
83
+ config = A2nConfig(
84
+ scale=4, # train a model to upscale 4x
85
+ )
86
+ model = A2nModel(config)
87
+
88
+ trainer = Trainer(
89
+ model=model, # the instantiated model to be trained
90
+ args=training_args, # training arguments, defined above
91
+ train_dataset=train_dataset, # training dataset
92
+ eval_dataset=val_dataset # evaluation dataset
93
+ )
94
+
95
+ trainer.train()
96
+ ```
97
+ ## Evaluation results
98
+ The evaluation metrics include [PSNR](https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio#Quality_estimation_with_PSNR) and [SSIM](https://en.wikipedia.org/wiki/Structural_similarity#Algorithm).
99
+
100
+ Evaluation datasets include:
101
+ - Set5 - [Bevilacqua et al. (2012)](http://people.rennes.inria.fr/Aline.Roumy/results/SR_BMVC12.html)
102
+ - Set14 - [Zeyde et al. (2010)](https://sites.google.com/site/romanzeyde/research-interests)
103
+ - BSD100 - [Martin et al. (2001)](https://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/)
104
+ - Urban100 - [Huang et al. (2015)](https://sites.google.com/site/jbhuang0604/publications/struct_sr)
105
+
106
+ The results columns below are represented below as `PSNR/SSIM`. They are compared against a Bicubic baseline.
107
+
108
+ |Dataset |Scale |Bicubic |msrn-bam |
109
+ |--- |--- |--- |--- |
110
+ |Set5 |2x |33.64/0.9292 | |
111
+ |Set5 |3x |30.39/0.8678 | |
112
+ |Set5 |4x |28.42/0.8101 |**32.07/0.8933** |
113
+ |Set14 |2x |30.22/0.8683 | |
114
+ |Set14 |3x |27.53/0.7737 | |
115
+ |Set14 |4x |25.99/0.7023 |**28.56/0.7801** |
116
+ |BSD100 |2x |29.55/0.8425 | |
117
+ |BSD100 |3x |27.20/0.7382 | |
118
+ |BSD100 |4x |25.96/0.6672 |**27.54/0.7342** |
119
+ |Urban100 |2x |26.66/0.8408 | |
120
+ |Urban100 |3x | | |
121
+ |Urban100 |4x |23.14/0.6573 |**25.89/0.7787** |
122
+
123
+ ![Comparing Bicubic upscaling against the models x2 upscaling on Set5 Image 2](images/a2n_2_4_compare.png "Comparing Bicubic upscaling against the models x2 upscaling on Set5 Image 2")
124
+
125
+ ## BibTeX entry and citation info
126
+ ```bibtex
127
+ @misc{chen2021attention,
128
+ title={Attention in Attention Network for Image Super-Resolution},
129
+ author={Haoyu Chen and Jinjin Gu and Zhi Zhang},
130
+ year={2021},
131
+ eprint={2104.09497},
132
+ archivePrefix={arXiv},
133
+ primaryClass={cs.CV}
134
+ }
135
+ ```
config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "eugenesiow/a2n",
3
+ "data_parallel": false,
4
+ "model_type": "A2N",
5
+ "supported_scales": [2, 3, 4]
6
+ }
images/a2n_2_4_compare.png ADDED
images/a2n_4_4_compare.png ADDED
pytorch_model_4x.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a46036b232ed1afa303d176a374d73779c3dad2966ba1463ed6a2426081d42b4
3
+ size 4258525