Create scheduler/edm_euler_scheduler.py
Browse files- scheduler/edm_euler_scheduler.py +344 -0
scheduler/edm_euler_scheduler.py
ADDED
@@ -0,0 +1,344 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
|
3 |
+
from dataclasses import dataclass
|
4 |
+
from typing import Optional, Tuple, Union
|
5 |
+
import torch
|
6 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
7 |
+
from diffusers.utils import BaseOutput
|
8 |
+
from diffusers.utils.torch_utils import randn_tensor
|
9 |
+
from diffusers.schedulers.scheduling_utils import SchedulerMixin, SchedulerOutput
|
10 |
+
from diffusers.schedulers.scheduling_edm_euler import EDMEulerSchedulerOutput
|
11 |
+
|
12 |
+
class EDMEulerScheduler(SchedulerMixin, ConfigMixin):
|
13 |
+
"""
|
14 |
+
Implements the Euler scheduler in EDM formulation as presented in Karras et al. 2022 [1].
|
15 |
+
[1] Karras, Tero, et al. "Elucidating the Design Space of Diffusion-Based Generative Models."
|
16 |
+
https://arxiv.org/abs/2206.00364
|
17 |
+
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
|
18 |
+
methods the library implements for all schedulers such as loading and saving.
|
19 |
+
Args:
|
20 |
+
sigma_min (`float`, *optional*, defaults to 0.002):
|
21 |
+
Minimum noise magnitude in the sigma schedule. This was set to 0.002 in the EDM paper [1]; a reasonable
|
22 |
+
range is [0, 10].
|
23 |
+
sigma_max (`float`, *optional*, defaults to 80.0):
|
24 |
+
Maximum noise magnitude in the sigma schedule. This was set to 80.0 in the EDM paper [1]; a reasonable
|
25 |
+
range is [0.2, 80.0].
|
26 |
+
sigma_data (`float`, *optional*, defaults to 0.5):
|
27 |
+
The standard deviation of the data distribution. This is set to 0.5 in the EDM paper [1].
|
28 |
+
num_train_timesteps (`int`, defaults to 1000):
|
29 |
+
The number of diffusion steps to train the model.
|
30 |
+
prediction_type (`str`, defaults to `epsilon`, *optional*):
|
31 |
+
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
|
32 |
+
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
|
33 |
+
Video](https://imagen.research.google/video/paper.pdf) paper).
|
34 |
+
rho (`float`, *optional*, defaults to 7.0):
|
35 |
+
The rho parameter used for calculating the Karras sigma schedule, which is set to 7.0 in the EDM paper [1].
|
36 |
+
"""
|
37 |
+
|
38 |
+
_compatibles = []
|
39 |
+
order = 1
|
40 |
+
|
41 |
+
@register_to_config
|
42 |
+
def __init__(
|
43 |
+
self,
|
44 |
+
sigma_min: float = 0.002,
|
45 |
+
sigma_max: float = 80.0,
|
46 |
+
sigma_data: float = 0.5,
|
47 |
+
num_train_timesteps: int = 1000,
|
48 |
+
prediction_type: str = "epsilon",
|
49 |
+
rho: float = 7.0,
|
50 |
+
):
|
51 |
+
# setable values
|
52 |
+
self.num_inference_steps = None
|
53 |
+
|
54 |
+
ramp = torch.linspace(0, 1, num_train_timesteps)
|
55 |
+
sigmas = self._compute_sigmas(ramp)
|
56 |
+
self.timesteps = self.precondition_noise(sigmas)
|
57 |
+
|
58 |
+
self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)])
|
59 |
+
|
60 |
+
self.is_scale_input_called = False
|
61 |
+
|
62 |
+
self._step_index = None
|
63 |
+
self._begin_index = None
|
64 |
+
self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
|
65 |
+
|
66 |
+
@property
|
67 |
+
def init_noise_sigma(self):
|
68 |
+
# standard deviation of the initial noise distribution
|
69 |
+
return (self.config.sigma_max **2 + 1) ** 0.5
|
70 |
+
|
71 |
+
@property
|
72 |
+
def step_index(self):
|
73 |
+
"""
|
74 |
+
The index counter for current timestep. It will increae 1 after each scheduler step.
|
75 |
+
"""
|
76 |
+
return self._step_index
|
77 |
+
|
78 |
+
@property
|
79 |
+
def begin_index(self):
|
80 |
+
"""
|
81 |
+
The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
|
82 |
+
"""
|
83 |
+
return self._begin_index
|
84 |
+
|
85 |
+
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
|
86 |
+
def set_begin_index(self, begin_index: int = 0):
|
87 |
+
"""
|
88 |
+
Sets the begin index for the scheduler. This function should be run from pipeline before the inference.
|
89 |
+
Args:
|
90 |
+
begin_index (`int`):
|
91 |
+
The begin index for the scheduler.
|
92 |
+
"""
|
93 |
+
self._begin_index = begin_index
|
94 |
+
|
95 |
+
def precondition_inputs(self, sample, sigma):
|
96 |
+
c_in = 1 / ((sigma**2 + self.config.sigma_data**2) ** 0.5)
|
97 |
+
scaled_sample = sample * c_in
|
98 |
+
return scaled_sample
|
99 |
+
|
100 |
+
def precondition_noise(self, sigma):
|
101 |
+
if not isinstance(sigma, torch.Tensor):
|
102 |
+
sigma = torch.tensor([sigma])
|
103 |
+
|
104 |
+
c_noise = 0.25 * torch.log(sigma)
|
105 |
+
|
106 |
+
return c_noise
|
107 |
+
|
108 |
+
def precondition_outputs(self, sample, model_output, sigma):
|
109 |
+
sigma_data = self.config.sigma_data
|
110 |
+
c_skip = sigma_data**2 / (sigma**2 + sigma_data**2)
|
111 |
+
|
112 |
+
if self.config.prediction_type == "epsilon":
|
113 |
+
c_out = sigma * sigma_data / (sigma**2 + sigma_data**2) ** 0.5
|
114 |
+
elif self.config.prediction_type == "v_prediction":
|
115 |
+
c_out = -sigma * sigma_data / (sigma**2 + sigma_data**2) ** 0.5
|
116 |
+
else:
|
117 |
+
raise ValueError(f"Prediction type {self.config.prediction_type} is not supported.")
|
118 |
+
|
119 |
+
denoised = c_skip * sample + c_out * model_output
|
120 |
+
|
121 |
+
return denoised
|
122 |
+
|
123 |
+
def scale_model_input(
|
124 |
+
self, sample: torch.FloatTensor, timestep: Union[float, torch.FloatTensor]
|
125 |
+
) -> torch.FloatTensor:
|
126 |
+
"""
|
127 |
+
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
|
128 |
+
current timestep. Scales the denoising model input by `(sigma**2 + 1) ** 0.5` to match the Euler algorithm.
|
129 |
+
Args:
|
130 |
+
sample (`torch.FloatTensor`):
|
131 |
+
The input sample.
|
132 |
+
timestep (`int`, *optional*):
|
133 |
+
The current timestep in the diffusion chain.
|
134 |
+
Returns:
|
135 |
+
`torch.FloatTensor`:
|
136 |
+
A scaled input sample.
|
137 |
+
"""
|
138 |
+
if self.step_index is None:
|
139 |
+
self._init_step_index(timestep)
|
140 |
+
|
141 |
+
sigma = self.sigmas[self.step_index]
|
142 |
+
sample = self.precondition_inputs(sample, sigma)
|
143 |
+
|
144 |
+
self.is_scale_input_called = True
|
145 |
+
return sample
|
146 |
+
|
147 |
+
def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
|
148 |
+
"""
|
149 |
+
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
|
150 |
+
Args:
|
151 |
+
num_inference_steps (`int`):
|
152 |
+
The number of diffusion steps used when generating samples with a pre-trained model.
|
153 |
+
device (`str` or `torch.device`, *optional*):
|
154 |
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
155 |
+
"""
|
156 |
+
self.num_inference_steps = num_inference_steps
|
157 |
+
|
158 |
+
ramp = torch.linspace(0, 1, self.num_inference_steps)
|
159 |
+
|
160 |
+
# ramp = np.linspace(0, 1, self.num_inference_steps)
|
161 |
+
sigmas = self._compute_sigmas(ramp)
|
162 |
+
|
163 |
+
# sigmas = torch.from_numpy(sigmas).to(dtype=torch.float32, device=device)
|
164 |
+
self.timesteps = self.precondition_noise(sigmas)
|
165 |
+
|
166 |
+
self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)])
|
167 |
+
self._step_index = None
|
168 |
+
self._begin_index = None
|
169 |
+
self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
|
170 |
+
|
171 |
+
# Taken from https://github.com/crowsonkb/k-diffusion/blob/686dbad0f39640ea25c8a8c6a6e56bb40eacefa2/k_diffusion/sampling.py#L17
|
172 |
+
def _compute_sigmas(self, ramp, sigma_min=None, sigma_max=None) -> torch.FloatTensor:
|
173 |
+
"""Constructs the noise schedule of Karras et al. (2022)."""
|
174 |
+
|
175 |
+
sigma_min = sigma_min or self.config.sigma_min
|
176 |
+
sigma_max = sigma_max or self.config.sigma_max
|
177 |
+
|
178 |
+
rho = self.config.rho
|
179 |
+
min_inv_rho = sigma_min ** (1 / rho)
|
180 |
+
max_inv_rho = sigma_max ** (1 / rho)
|
181 |
+
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
|
182 |
+
# sigmas = (sigmas * (sigma_max - sigma_min)) / ((sigma_max - sigma_min) - sigmas).clamp(1e-8) # FIXED BY GIULIO
|
183 |
+
return sigmas
|
184 |
+
|
185 |
+
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.index_for_timestep
|
186 |
+
def index_for_timestep(self, timestep, schedule_timesteps=None):
|
187 |
+
if schedule_timesteps is None:
|
188 |
+
schedule_timesteps = self.timesteps
|
189 |
+
|
190 |
+
indices = (schedule_timesteps == timestep).nonzero()
|
191 |
+
|
192 |
+
# The sigma index that is taken for the **very** first `step`
|
193 |
+
# is always the second index (or the last index if there is only 1)
|
194 |
+
# This way we can ensure we don't accidentally skip a sigma in
|
195 |
+
# case we start in the middle of the denoising schedule (e.g. for image-to-image)
|
196 |
+
pos = 1 if len(indices) > 1 else 0
|
197 |
+
|
198 |
+
return indices[pos].item()
|
199 |
+
|
200 |
+
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._init_step_index
|
201 |
+
def _init_step_index(self, timestep):
|
202 |
+
if self.begin_index is None:
|
203 |
+
if isinstance(timestep, torch.Tensor):
|
204 |
+
timestep = timestep.to(self.timesteps.device)
|
205 |
+
self._step_index = self.index_for_timestep(timestep)
|
206 |
+
else:
|
207 |
+
self._step_index = self._begin_index
|
208 |
+
|
209 |
+
def step(
|
210 |
+
self,
|
211 |
+
model_output: torch.FloatTensor,
|
212 |
+
timestep: Union[float, torch.FloatTensor],
|
213 |
+
sample: torch.FloatTensor,
|
214 |
+
s_churn: float = 0.0,
|
215 |
+
s_tmin: float = 0.0,
|
216 |
+
s_tmax: float = float("inf"),
|
217 |
+
s_noise: float = 1.0,
|
218 |
+
generator: Optional[torch.Generator] = None,
|
219 |
+
return_dict: bool = True,
|
220 |
+
) -> Union[EDMEulerSchedulerOutput, Tuple]:
|
221 |
+
"""
|
222 |
+
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
|
223 |
+
process from the learned model outputs (most often the predicted noise).
|
224 |
+
Args:
|
225 |
+
model_output (`torch.FloatTensor`):
|
226 |
+
The direct output from learned diffusion model.
|
227 |
+
timestep (`float`):
|
228 |
+
The current discrete timestep in the diffusion chain.
|
229 |
+
sample (`torch.FloatTensor`):
|
230 |
+
A current instance of a sample created by the diffusion process.
|
231 |
+
s_churn (`float`):
|
232 |
+
s_tmin (`float`):
|
233 |
+
s_tmax (`float`):
|
234 |
+
s_noise (`float`, defaults to 1.0):
|
235 |
+
Scaling factor for noise added to the sample.
|
236 |
+
generator (`torch.Generator`, *optional*):
|
237 |
+
A random number generator.
|
238 |
+
return_dict (`bool`):
|
239 |
+
Whether or not to return a [`~schedulers.scheduling_euler_discrete.EDMEulerSchedulerOutput`] or
|
240 |
+
tuple.
|
241 |
+
Returns:
|
242 |
+
[`~schedulers.scheduling_euler_discrete.EDMEulerSchedulerOutput`] or `tuple`:
|
243 |
+
If return_dict is `True`, [`~schedulers.scheduling_euler_discrete.EDMEulerSchedulerOutput`] is
|
244 |
+
returned, otherwise a tuple is returned where the first element is the sample tensor.
|
245 |
+
"""
|
246 |
+
|
247 |
+
if (
|
248 |
+
isinstance(timestep, int)
|
249 |
+
or isinstance(timestep, torch.IntTensor)
|
250 |
+
or isinstance(timestep, torch.LongTensor)
|
251 |
+
):
|
252 |
+
raise ValueError(
|
253 |
+
(
|
254 |
+
"Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
|
255 |
+
" `EDMEulerScheduler.step()` is not supported. Make sure to pass"
|
256 |
+
" one of the `scheduler.timesteps` as a timestep."
|
257 |
+
),
|
258 |
+
)
|
259 |
+
|
260 |
+
if not self.is_scale_input_called:
|
261 |
+
logger.warning(
|
262 |
+
"The `scale_model_input` function should be called before `step` to ensure correct denoising. "
|
263 |
+
"See `StableDiffusionPipeline` for a usage example."
|
264 |
+
)
|
265 |
+
|
266 |
+
if self.step_index is None:
|
267 |
+
self._init_step_index(timestep)
|
268 |
+
|
269 |
+
# Upcast to avoid precision issues when computing prev_sample
|
270 |
+
sample = sample.to(torch.float32)
|
271 |
+
|
272 |
+
sigma = self.sigmas[self.step_index]
|
273 |
+
|
274 |
+
gamma = min(s_churn / (len(self.sigmas) - 1), 2**0.5 - 1) if s_tmin <= sigma <= s_tmax else 0.0
|
275 |
+
|
276 |
+
noise = randn_tensor(
|
277 |
+
model_output.shape, dtype=model_output.dtype, device=model_output.device, generator=generator
|
278 |
+
)
|
279 |
+
|
280 |
+
eps = noise * s_noise
|
281 |
+
sigma_hat = sigma * (gamma + 1)
|
282 |
+
|
283 |
+
if gamma > 0:
|
284 |
+
sample = sample + eps * (sigma_hat**2 - sigma**2) ** 0.5
|
285 |
+
|
286 |
+
# 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
|
287 |
+
pred_original_sample = self.precondition_outputs(sample, model_output, sigma_hat)
|
288 |
+
|
289 |
+
# 2. Convert to an ODE derivative
|
290 |
+
derivative = (sample - pred_original_sample) / sigma_hat
|
291 |
+
|
292 |
+
dt = self.sigmas[self.step_index + 1] - sigma_hat
|
293 |
+
|
294 |
+
prev_sample = sample + derivative * dt
|
295 |
+
|
296 |
+
# Cast sample back to model compatible dtype
|
297 |
+
prev_sample = prev_sample.to(model_output.dtype)
|
298 |
+
|
299 |
+
# upon completion increase step index by one
|
300 |
+
self._step_index += 1
|
301 |
+
|
302 |
+
if not return_dict:
|
303 |
+
return (prev_sample,)
|
304 |
+
|
305 |
+
return EDMEulerSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample)
|
306 |
+
|
307 |
+
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.add_noise
|
308 |
+
def add_noise(
|
309 |
+
self,
|
310 |
+
original_samples: torch.FloatTensor,
|
311 |
+
noise: torch.FloatTensor,
|
312 |
+
timesteps: torch.FloatTensor,
|
313 |
+
) -> torch.FloatTensor:
|
314 |
+
# Make sure sigmas and timesteps have the same device and dtype as original_samples
|
315 |
+
sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
|
316 |
+
if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
|
317 |
+
# mps does not support float64
|
318 |
+
schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32)
|
319 |
+
timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
|
320 |
+
else:
|
321 |
+
schedule_timesteps = self.timesteps.to(original_samples.device)
|
322 |
+
timesteps = timesteps.to(original_samples.device)
|
323 |
+
|
324 |
+
# self.begin_index is None when scheduler is used for training, or pipeline does not implement set_begin_index
|
325 |
+
if self.begin_index is None:
|
326 |
+
step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps]
|
327 |
+
elif self.step_index is not None:
|
328 |
+
# add_noise is called after first denoising step (for inpainting)
|
329 |
+
step_indices = [self.step_index] * timesteps.shape[0]
|
330 |
+
else:
|
331 |
+
# add noise is called bevore first denoising step to create inital latent(img2img)
|
332 |
+
step_indices = [self.begin_index] * timesteps.shape[0]
|
333 |
+
|
334 |
+
sigma = sigmas[step_indices].flatten()
|
335 |
+
while len(sigma.shape) < len(original_samples.shape):
|
336 |
+
sigma = sigma.unsqueeze(-1)
|
337 |
+
|
338 |
+
mask = ((sigma - self.config.sigma_max).abs() < 1e-3).float() # changed by giulio
|
339 |
+
|
340 |
+
noisy_samples = (1 - mask) * (original_samples + noise * sigma) + mask * noise # changed by giulio
|
341 |
+
return noisy_samples
|
342 |
+
|
343 |
+
def __len__(self):
|
344 |
+
return self.config.num_train_timesteps
|