File size: 12,774 Bytes
8197344 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
import math
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.utils import BaseOutput
from diffusers.utils.torch_utils import randn_tensor
from diffusers.schedulers.scheduling_utils import SchedulerMixin, SchedulerOutput
@dataclass
class SdeVeOutput(BaseOutput):
"""
Output class for the scheduler's `step` function output.
Args:
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
denoising loop.
prev_sample_mean (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
Mean averaged `prev_sample` over previous timesteps.
"""
prev_sample: torch.FloatTensor
prev_sample_mean: torch.FloatTensor
class ScoreSdeVeScheduler(SchedulerMixin, ConfigMixin):
"""
`ScoreSdeVeScheduler` is a variance exploding stochastic differential equation (SDE) scheduler.
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
methods the library implements for all schedulers such as loading and saving.
Args:
num_train_timesteps (`int`, defaults to 1000):
The number of diffusion steps to train the model.
snr (`float`, defaults to 0.15):
A coefficient weighting the step from the `model_output` sample (from the network) to the random noise.
sigma_min (`float`, defaults to 0.01):
The initial noise scale for the sigma sequence in the sampling procedure. The minimum sigma should mirror
the distribution of the data.
sigma_max (`float`, defaults to 1348.0):
The maximum value used for the range of continuous timesteps passed into the model.
sampling_eps (`float`, defaults to 1e-5):
The end value of sampling where timesteps decrease progressively from 1 to epsilon.
correct_steps (`int`, defaults to 1):
The number of correction steps performed on a produced sample.
"""
order = 1
@register_to_config
def __init__(
self,
num_train_timesteps: int = 2000,
snr: float = 0.15,
sigma_min: float = 0.01,
sigma_max: float = 1348.0,
sampling_eps: float = 1e-5,
correct_steps: int = 1,
):
# standard deviation of the initial noise distribution
self.init_noise_sigma = sigma_max
# setable values
self.timesteps = None
self.set_sigmas(num_train_timesteps, sigma_min, sigma_max, sampling_eps)
def scale_model_input(self, sample: torch.FloatTensor, timestep: Optional[int] = None) -> torch.FloatTensor:
"""
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
current timestep.
Args:
sample (`torch.FloatTensor`):
The input sample.
timestep (`int`, *optional*):
The current timestep in the diffusion chain.
Returns:
`torch.FloatTensor`:
A scaled input sample.
"""
return sample
def set_timesteps(
self, num_inference_steps: int, sampling_eps: float = None, device: Union[str, torch.device] = None
):
"""
Sets the continuous timesteps used for the diffusion chain (to be run before inference).
Args:
num_inference_steps (`int`):
The number of diffusion steps used when generating samples with a pre-trained model.
sampling_eps (`float`, *optional*):
The final timestep value (overrides value given during scheduler instantiation).
device (`str` or `torch.device`, *optional*):
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
"""
sampling_eps = sampling_eps if sampling_eps is not None else self.config.sampling_eps
self.timesteps = torch.linspace(1, sampling_eps, num_inference_steps, device=device)
def set_sigmas(
self, num_inference_steps: int, sigma_min: float = None, sigma_max: float = None, sampling_eps: float = None
):
"""
Sets the noise scales used for the diffusion chain (to be run before inference). The sigmas control the weight
of the `drift` and `diffusion` components of the sample update.
Args:
num_inference_steps (`int`):
The number of diffusion steps used when generating samples with a pre-trained model.
sigma_min (`float`, optional):
The initial noise scale value (overrides value given during scheduler instantiation).
sigma_max (`float`, optional):
The final noise scale value (overrides value given during scheduler instantiation).
sampling_eps (`float`, optional):
The final timestep value (overrides value given during scheduler instantiation).
"""
sigma_min = sigma_min if sigma_min is not None else self.config.sigma_min
sigma_max = sigma_max if sigma_max is not None else self.config.sigma_max
sampling_eps = sampling_eps if sampling_eps is not None else self.config.sampling_eps
if self.timesteps is None:
self.set_timesteps(num_inference_steps, sampling_eps)
self.sigmas = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps)
self.discrete_sigmas = torch.exp(torch.linspace(math.log(sigma_min), math.log(sigma_max), num_inference_steps))
self.sigmas = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps])
def get_adjacent_sigma(self, timesteps, t):
return torch.where(
timesteps == 0,
torch.zeros_like(t.to(timesteps.device)),
self.discrete_sigmas[timesteps - 1].to(timesteps.device),
)
def step_pred(
self,
model_output: torch.FloatTensor,
timestep: int,
sample: torch.FloatTensor,
generator: Optional[torch.Generator] = None,
return_dict: bool = True,
) -> Union[SdeVeOutput, Tuple]:
"""
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
process from the learned model outputs (most often the predicted noise).
Args:
model_output (`torch.FloatTensor`):
The direct output from learned diffusion model.
timestep (`int`):
The current discrete timestep in the diffusion chain.
sample (`torch.FloatTensor`):
A current instance of a sample created by the diffusion process.
generator (`torch.Generator`, *optional*):
A random number generator.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~schedulers.scheduling_sde_ve.SdeVeOutput`] or `tuple`.
Returns:
[`~schedulers.scheduling_sde_ve.SdeVeOutput`] or `tuple`:
If return_dict is `True`, [`~schedulers.scheduling_sde_ve.SdeVeOutput`] is returned, otherwise a tuple
is returned where the first element is the sample tensor.
"""
if self.timesteps is None:
raise ValueError(
"`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler"
)
timestep = timestep * torch.ones(
sample.shape[0], device=sample.device
) # torch.repeat_interleave(timestep, sample.shape[0])
timesteps = (timestep * (len(self.timesteps) - 1)).long()
# mps requires indices to be in the same device, so we use cpu as is the default with cuda
timesteps = timesteps.to(self.discrete_sigmas.device)
sigma = self.discrete_sigmas[timesteps].to(sample.device)
adjacent_sigma = self.get_adjacent_sigma(timesteps, timestep).to(sample.device)
drift = torch.zeros_like(sample)
diffusion = (sigma**2 - adjacent_sigma**2) ** 0.5
# equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x)
# also equation 47 shows the analog from SDE models to ancestral sampling methods
diffusion = diffusion.flatten()
while len(diffusion.shape) < len(sample.shape):
diffusion = diffusion.unsqueeze(-1)
drift = drift - diffusion**2 * model_output
# equation 6: sample noise for the diffusion term of
noise = randn_tensor(
sample.shape, layout=sample.layout, generator=generator, device=sample.device, dtype=sample.dtype
)
prev_sample_mean = sample - drift # subtract because `dt` is a small negative timestep
# TODO is the variable diffusion the correct scaling term for the noise?
prev_sample = prev_sample_mean + diffusion * noise # add impact of diffusion field g
if not return_dict:
return (prev_sample, prev_sample_mean)
return SdeVeOutput(prev_sample=prev_sample, prev_sample_mean=prev_sample_mean)
def step_correct(
self,
model_output: torch.FloatTensor,
sample: torch.FloatTensor,
generator: Optional[torch.Generator] = None,
return_dict: bool = True,
) -> Union[SchedulerOutput, Tuple]:
"""
Correct the predicted sample based on the `model_output` of the network. This is often run repeatedly after
making the prediction for the previous timestep.
Args:
model_output (`torch.FloatTensor`):
The direct output from learned diffusion model.
sample (`torch.FloatTensor`):
A current instance of a sample created by the diffusion process.
generator (`torch.Generator`, *optional*):
A random number generator.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~schedulers.scheduling_sde_ve.SdeVeOutput`] or `tuple`.
Returns:
[`~schedulers.scheduling_sde_ve.SdeVeOutput`] or `tuple`:
If return_dict is `True`, [`~schedulers.scheduling_sde_ve.SdeVeOutput`] is returned, otherwise a tuple
is returned where the first element is the sample tensor.
"""
if self.timesteps is None:
raise ValueError(
"`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler"
)
# For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z"
# sample noise for correction
noise = randn_tensor(sample.shape, layout=sample.layout, generator=generator, device=sample.device).to(sample.device)
# compute step size from the model_output, the noise, and the snr
grad_norm = torch.norm(model_output.reshape(model_output.shape[0], -1), dim=-1).mean()
noise_norm = torch.norm(noise.reshape(noise.shape[0], -1), dim=-1).mean()
step_size = (self.config.snr * noise_norm / grad_norm) ** 2 * 2
step_size = step_size * torch.ones(sample.shape[0]).to(sample.device)
# self.repeat_scalar(step_size, sample.shape[0])
# compute corrected sample: model_output term and noise term
step_size = step_size.flatten()
while len(step_size.shape) < len(sample.shape):
step_size = step_size.unsqueeze(-1)
prev_sample_mean = sample + step_size * model_output
prev_sample = prev_sample_mean + ((step_size * 2) ** 0.5) * noise
if not return_dict:
return (prev_sample,)
return SchedulerOutput(prev_sample=prev_sample)
def add_noise(
self,
original_samples: torch.FloatTensor,
noise: torch.FloatTensor,
timesteps: torch.FloatTensor,
) -> torch.FloatTensor:
# Make sure sigmas and timesteps have the same device and dtype as original_samples
timesteps = timesteps.to(original_samples.device)
sigmas = self.config.sigma_min * (self.config.sigma_max / self.config.sigma_min) ** timesteps
noise = (
noise * sigmas[:, None, None, None]
if noise is not None
else torch.randn_like(original_samples) * sigmas[:, None, None, None]
)
noisy_samples = noise + original_samples
return noisy_samples
def __len__(self):
return self.config.num_train_timesteps |