File size: 863 Bytes
1d1c7b1
 
afac378
 
 
 
9845eee
afac378
1d50a1e
afac378
 
 
 
 
 
 
 
1d1c7b1
afac378
1d1c7b1
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
from transformers import pipeline
from typing import Any

class EndpointHandler():
    def __init__(self, path=""):
        # create inference pipeline
        self.pipeline = pipeline("text-to-speech", model=path, device=0)

    def __call__(self, data: Any) -> Any:
        inputs = data.pop("inputs", data)
        parameters = data.pop("parameters", None)

        # pass inputs with all kwargs in data
        if parameters is not None:
            prediction = self.pipeline(inputs, **parameters)
        else:
            prediction = self.pipeline(inputs)
        
        # postprocess the prediction
        audio_array = prediction['audio']
        sampling_rate = prediction['sampling_rate']
        
        # If you need to return raw audio data
        return {
            "audio": audio_array,
            "sampling_rate": sampling_rate
        }