--- license: apache-2.0 base_model: cl-tohoku/bert-base-japanese-v3 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-japanese-ner results: [] --- # bert-japanese-ner This model is a fine-tuned version of [cl-tohoku/bert-base-japanese-v3](https://huggingface.co/cl-tohoku/bert-base-japanese-v3) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0372 - Precision: 0.9673 - Recall: 0.9682 - F1: 0.9678 - Accuracy: 0.9933 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0553 | 1.0 | 848 | 0.0263 | 0.9683 | 0.9334 | 0.9505 | 0.9908 | | 0.0133 | 2.0 | 1696 | 0.0241 | 0.9707 | 0.9560 | 0.9633 | 0.9928 | | 0.0065 | 3.0 | 2544 | 0.0245 | 0.9631 | 0.9706 | 0.9668 | 0.9935 | | 0.0027 | 4.0 | 3392 | 0.0321 | 0.9716 | 0.9659 | 0.9687 | 0.9936 | | 0.0012 | 5.0 | 4240 | 0.0372 | 0.9673 | 0.9682 | 0.9678 | 0.9933 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.0.1+cu118 - Datasets 2.16.1 - Tokenizers 0.15.0