exploiter345
commited on
Commit
·
fd9048b
1
Parent(s):
63ef22d
DQN lunar lander V2 trained for 500k, n_steps=2048, batch_size=128
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ishan_dqn_lunar_lander.zip +3 -0
- ishan_dqn_lunar_lander/_stable_baselines3_version +1 -0
- ishan_dqn_lunar_lander/data +115 -0
- ishan_dqn_lunar_lander/policy.optimizer.pth +3 -0
- ishan_dqn_lunar_lander/policy.pth +3 -0
- ishan_dqn_lunar_lander/pytorch_variables.pth +3 -0
- ishan_dqn_lunar_lander/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: DQN
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 167.08 +/- 79.19
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **DQN** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **DQN** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=", "__module__": "stable_baselines3.dqn.policies", "__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function DQNPolicy.__init__ at 0x7f6eeafaab90>", "_build": "<function DQNPolicy._build at 0x7f6eeafaac20>", "make_q_net": "<function DQNPolicy.make_q_net at 0x7f6eeafaacb0>", "forward": "<function DQNPolicy.forward at 0x7f6eeafaad40>", "_predict": "<function DQNPolicy._predict at 0x7f6eeafaadd0>", "_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7f6eeafaae60>", "set_training_mode": "<function DQNPolicy.set_training_mode at 0x7f6eeafaaef0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f6eeafeae40>"}, "verbose": 0, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVJgwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaDCMBXN0YXRllH2UKIwDa2V5lGgSKJbACQAAAAAAAPYv1HsK/f3P4s1yGoZ0D5PSdJobqR6qyDaFzO3koE0gHt3uUr874z4xF8hNoks8Z0YqeylNJCIXweufH267ktIymI6m1oKHn27FhR8K9DCB97GgmrH+bdoozam8U8yTX5X4nUz5hv+qYiZPDZf9opxxXW4ScNNU0iSKrfttCJlt46EWn5Afj1/QLWYw5dvC2n3fGttGes2GEfNnRY3Dy54gMubGPPpaBuSVUUNBzoOQTOfnlkQW+2TTpGMvDyqhzRBVmfO49uLxeeOIqxl/5oIFQZF3a4t4HfC6wS6+aLBKoA1Y0zoKvYfT2ZAAwNmhSOw1JM7GJbZqhvK5IFbB6hK+PGzayBITMzleSQCMVD0ToeqRdxKntx2Q/GDAPQKrC4ieMTHPf7TgAZvC85+Bl3RHbLxtMYo5qrA9MikFLTbM5BwSMCBL8MeplVwnUMkWTevjafd55J0OAc9UntCE6niayBzFzUzf/lm2yJuKgGWHCTf57ND9nMFumcDfDZPANEiUklfAM4DtE4ziQPJhdW9PCvQClDkZ1K2Ur5BG/dxZXnujg6yoV08A1MhTyv+E9VCBOP70G88gnoGvuPi7UlYV3hoR5VQN9aufi4RaqS8sRTp2h0txlejhEM/25y3jUhbnz85y5LeYja97ffX4T7aCWNyOJvkjIIfgNEn6ZzGQ40a5TpeuKTqkQ3B7VqLzCS77wT9DU+NzLSGJEJLiDKWxrGM8LRQG1P6CjvW/XMwAN4LiFmBH25A7UM/mXDSFPV43AMO315nkdgxMWal22rioAqWRjzbXfMptsc6cJqjj7EPp3udwMW5iNqZe0Pgf7u0Dtw0z1bivex0WFMiVO/mjPEvHIuAre4NBWyf4fY0WR3zQ4yZosdKrr/91B8fuqMn4M4b1omAvTvamV4EZlS46fb3/K4J7a49/3fhcMNO3BWwBnqjrwfL6K594pBX/Qlcgq8diyy+7CVpNv0LV1FfcakVFdr0EzPkRJpN9mn3wvkN5A7nhJcg2az4fHmPM9AtwaHqUmNw+mWybiffZ5LqWWRXAuBVbaCcqHhToLXANn1vQDHXCX56crSpkkg63E1VOI12cRbhK9Ttu0kn4Gy2lxi52F+R97gPvm2FCvCM0tfhu4IHghKjtbpuZXyamj6FPQHSkjQX7+Qanzza/K+iwf9a33S0iN2nJTWhAgiObkutSbCbUv+lwzPwtuUmm2noP6xo+/hJdbcAmaCUH9WT7Val4ps1XhAQUSbS0IMZ1kJ33edP7d99QBD85ITgxb36xgYyqbnCGLK0sB7Uz4+36TZ14ti/6fVnOW4KX3QjPZ1l/SvBpJbOufu8AOS4xpP2l9RW6ofqom65yx/ZDS9Jq5rBSITJOCrWd9RaefiQo128JS5Uzrvs7NqqOyFiHjaM4MAXwik0NcybPndUjsIGdGLIMNt3daBxzJL9zgHjn905V8YmRrXH28/be9T2QCXHjFrLLOwdU9Ag+e3tLHYyAoFZ76tihXUumMOPkm0E4bQlWgcbScsaU0wbY9g8vm8JzVopS4TwqFGsH9ZX4jtbaHJ51ZkdGl6WVQobSf3J3uR32paDZREq3cyYohzuVXhXC6S/7cFwGJLhlyLCurdTJwHETOM+5zUB7M6mgxk3U+NWu6TlLeSoveOuCLYB96BuilH2OBjNySLrJvVVcOYb1lmmPPuJrc4hz0+9eTwViBcic6I7HPrjrkTZrlS1t/2c//Iwi2AZ4mdumzsxlw84FJSDZ8rHF2om0BmHrJbY+juVMKadcmhPut9nSb00GhVmzXRmRM4kNG1aD2WI7UZt19dRVLpQ+rTySXfERZBfhl0QzIRLXyW3BObYDnpsp3A4HF+VShwlFtvlnGkH6LkofX/kkjpfy5845dW9+rk/jGX46OE/X39a0eoDTQGXG0DK3UGnkVuYdELjfYcWJmBwOmAmhNzwR4gggdlBDols1FRYQ+EwU0nWJLTZglQuJVu6lp436Xhdrap99DZjPOaiCRZXKmad/blq4UIuy292Q5vjN1PXZ445dY2+XGY7N/NeLCI0FKMW/8XGRJcyqc2AvBcJ7dnm4r1egQbcnx4rf0STmLOqoUF2kTtqoKSD/wlb/aCs6a1bv92uFyAgV/s8Tdh8Fw30pHpDGag/+yCQxVRkR8woOVVMbXJcuxqNRz7HjaoZ7DOjHxt8o99QYce8UzfFnU9ieKeqqjDc1GDgy2QiZq7SdWuPtpB3t+DLXfDE4/r65A7kUHOlUgZortLj0aVAPqlyyyZY6XHE3WsIrFm8QzSe+UbP7MFuPJ219L1y0NRjzYvOIpoi2osWRdasyDK0yAmJxo4O6VsfqFT4LLLVmF6BCEw+OrDNueFRKexMEYn1DK1r7SArnHx9Y3OJtF/MoSVclwJxuLBJLeqjPwt0I8T0UWmUlVH4pDKxFepJe0LrFBjdjy3cU8iD1QdsfPpaZzWPXR+k84CclhHicBz7JfrcZzaNCGi8XqADS3dUSNIJqw+gUjXhInJbywmwMnFz/OiGKgV80bqaCxrgv4meV3a60SW+jZvhDRvGc5XTkp0JLKfTz0wg7U3RMLVSIdQzlOFkjpauZonRO/tyMbP4Ul63MtanCNWXzpu6+lotJz9UDP5vfxE40VzV+UOcv+dTYx/m1YRobPCfUI9qxLo5AbommGvTLoZhLYeE+zzDNhXXMDee0kHnTp/KulUKcpsIGVnkhJJqIHs2ajsoCXghthrQyhnXNW9aH6WBy8KfIoqHaUpEuU/+TUT2HAa0M3Cw/QKbT0MJZd9w4vVdGG+pwfgQSHF+CHHKExEQGyf/Aps7M285T/CxrFuCTlaiJj0TKf3EljQYuYbQfnpg3eNurxI1FZ2QilIGpwbUr7hEt4yulXuSDxo4S2zbMaz67g9LB6gtWfWqoNsXoXyJHy4oI2tyU1kpoD7th1jTjgVOX5Fdi1N1F+smMVunreB3U1nCJqrwrw6QHeW2SksVFXNP0zg4lal6wdiTijJyn8cFMBHYIYddPoqJ0q+507iZKgNaqAHN+uruf358GfYpj/AfDELkEIIa057cvPVzEdot/IzigyC60Kh6Nj+Yfnv1R0GFEtEKUQhQjoL9553PshJw5xnvjoGUwhdikqrm9YmbM/IB3Ow27ZJZ6H9LAEkqpDeZAe9j0f7yEwZEjEfxbG1bBZt/HM8gDSd9b5zUQX5tE3zB0Dw4Hgk7IMpxLcb28yOyBRpmwkFyMZLU8iP5ymKPY4pYX5Atp1i9b7C50zGZ0k63yM4dnygfbtkL5YoeCbeckNaOeikjiTV+926kc2H4z2r5mvkpTkDOzreiCFpRoB4wCdTSUiYiHlFKUKEsDaAtOTk5K/////0r/////SwB0lGJNcAKFlGgVdJRSlIwDcG9zlEsUdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YnViLg==", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": "RandomState(MT19937)"}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVLwsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAAQmzXjLqBkOZMsT+HI9sE8dJDhFfYteEKVR7nSgtLLWTlUOeimYDqYZ2h1WOuHuB3AwVPUZZZmGye3H9zsmKdBiScHdSv/xy83J8CeRX12k2EFyGSXXMfY4eBNVc+SggT3BPJC97h2vyCPUHRkyURBN0hDQWaizDqR6JhvH5OQA1hNCdHFbLsuBnN2PnLoItWHY36BDL31tDcbURIsfGXb4LcVbU2pkRxMkZyPOoQjbThhqqWOJnNuWvbh6c9Jcej/5DiFras+kDi/CbK2/QNY2ohBVGRJhFg/cmkL3rM6igWbJ57h8Ktcck4vUEqSYvEoCKNF1F2MnNXTpP4VDGrdM0/XL72/lTrsnXMCLM+31AWIO8KhmDz81kHJN3mA9fh3FUK16GSmkUVEEu19FeENsKCwncMEeSKNr7G8Jp4zckcp4WHNeNUd4ZvO5eMv3LP8poazIznWQ9wAaSyqMxhMYRTciWNF2VhrADIigH4qrW7gzEeluVR778lBjyYZNpv/7UKPJjdOToPAYp7BqMpkwPBbqUNltRwZu/O6SzQF4HkWJKeGgz7m1AzJWBQfVqV7zCAZiGBoDO+kEU/lAtaUSFi28VKzfZVv+gg9I0EVSHhmPjJpBX5dRM8EwLSu2sYnI/2e6xwy9dGwgYdYaqX1TfGXb0ELWJOeCKgl/Sflk/w12HviNMjcuXUNvPQoYSklcQwhJCwzDBTEI++RHJHT08QoxIDMMhLpLq+nhnLEPb1X4/+ummljXglYjWECjKYHDz92UiJFa0bGQBRGJlZCV9fgSyPP0LUcn3MmAG/JTEpJi4/65UQ1WAx4kqbkWxp9fnuHSoZDyuiX2+sBr4R5JqRlTvNcnMbrZYHecs3H4hv3PG67XCT4CwYpIPCS67M8cnDaQ1dvwqFC5K8BR+8AbsygDkwqJFgCGqrpox8M2MfuyPpH5COQTE6XvXHSR3rOmImJZ7ORpiRHfSR4LBGFiuEPPt0twbFlm2BIPA61x/J6dDcjNEOgilwrL0e9PUpCHyuqZrqZ98PAVcjcZb8v88xTOYbom8bKSjQnEeup461BvXP838b1im+YNaN9eK6kQBox/mSlQbKYRN1fEdiyHihc/9hKC4acnpLdgr3Go6fxjUfCjVApmyEsU9GKMUsyab2r3Mqv3EijpoqslvybpaXHwdlTFy9BdNHo2UbIOPnmVvOPeiOjkAF/CrXPQctLzCxiY8VLTwaJOSsBdmZnTyIL/VV7aEUlht0Elj6bRVSlpLjPztbM1tF3VbQA3u/IVrIER9qPkx2FZcWj3lCgkSoKK2yRKSBQV+FytKvKxcKRwyAovPwZHwW9Lc9hn623gx5oHXbcvPPqvycEnnA1qMW9bNacfDKxZ0bjBsyl4l08zSfhIGKqGanfbZ+jVwmGCJ5lvN/lkaOD6BghRJ/w1JlZ+QICazVpztApGNqW/HFpVCX7jy7esbkkh/tgkhBOKtpDie2GZ4xpVN+hJbMWdOP3nmXS44ryk5yRGvN6DYn8o00lPVxpKoAMpUmKEnBK6rKHw0NGbZTN+2l0Muhi19cqrVMESVgB0MgLXBb+36NwI0eP4JewQ35g+DKf1PVQpTATyJtq/3G93UEogfiW7vi3a6PELo+b9gDXKwnnOYst6nnXUtq5sv0CVUtmTE7mFRevnvO9fZlHXkA957itTa+9D5wMqsWbHuehtxw/2HofWbh2IbK6cXBAiu/423Ee2wmT287Y0nvF65RoV89RybJB13VHGZ76KPLb3IMPQ9uDeG040LHgq1rsFuUcuaPFRw1g+OsAHhB6RUbnIgEMH+sB8MRewwxFq+3OLxY81MqJXk/4VD+vymAG4lhP6qyvxklnKuKuXL49TTbbnDAPJXzOwf175bvfIwAkMf2mFSzWvF40bnIZF4iNPIYqPgOFYDW3rE+VZd+50Ry9iEab7tvHwZoSOX2mZLbFFXP9VJlO6VanhcCxml8kRpmGhMhmzaGz3oQOe9MgNn62/CW5QrncvQb5mlf0e0HE8DA459A88mvVvQZcbx68R686HlQO5i6Zcehq/VBjujbWu/t01xnjb/OPSgPzLFnGeIOm0pkdVI9h0aAVo3au9T4CgNDr2iqAjNwRv17ov1dC4kIzxRJXvjwHYeMf66ua1Ox8FGWLqDTzaU/gkCmWx2uf9CTr4bf4KzBz8cmLOhxCzQafMERxVT7sVC0bcYlICiLtj6Qb5OmKsBqLYx1I/bbpQSWxHDl2q/U/iy6+kOLkGvG+aHVvfGLwPkS6m734qCrpYcqWjIpW4YdQbEbsy6EoQ/38YTus555mI3bx99s55NujFDCJNCleBqb6e+WjMiGJJEyEXrCRwvEZURgvhOG6QFiVGVjZi0dcdJ6JUJjPBvERsA67u6/woej2gK7ZT1Yj0yileqEXWjFSi9nHrQTALVTiWaQy3ZmCoEUD8DijKUGWo1j94iGEiEzH5AZWs2x+M3LYnt4AYa1teqYpwQ/XVReQJBNhtZV1PjNKqyn5JEYkK9o+d+QaERCHUVBUnQo3IIJM24WftdWqKpbFdK+ffeN8u1SdpDtiWXw8KHcBzXuahM1LJCWqW5h/eC4MjPgq4jbUN/+6OH9HEXTCDYzKsqj4YDaXERuVhX5hQ2KRR9Q1cQnBIXeDCWOd43dr8btQgXx+xJeBSZ/QLS0hSHRk1dU98s+cki0o44soflMApM6bNx+u8qItZv9OAY/L0iCrlCZMpDHjbOX1Vynuxl+Z3DRUSFgSeO3Z9fu9IbzZczLIyoF8w9dpnrypGKEIprJ8GSBIVVQoYTsMenDj8J0Gv/RBTtbaOE1QimhYth+r75QaPF4G1JbWbHAYjosHXPmNkOAkLbQLDJiKa9CZ/a96A4HVxSVjV1YLKmtT8Wp8geLyIi/F9EeW71LmbgxIf/+5y9UBywYw75IJXnG5BY/gXp9MwlXX72LIJD2dBtDU1C/RQmsBqXFAS02MZmygagl9kIonYALc2r0K22LzgOR64w2jw0RmS2M8/KOFlZrsrXfRUvqFRIQwxvhD+VeJILDc7UBnn5gUXOYIX/nVZOAqDxuGk9PdpxbJBMzpiOskRbLVvUlkA6KS5itZFIYXX1AcQz089rHlcCVRuRscWOLYvBlwdJ+wh44mQL4sI/r1DId+TOqEp0T9C9vNL812c2R8GYe0vlt2VAOev6ekLPD2Ps7mlD8I6aEID82ZfN5dAlq4nn30HF5Snlffaaytx7z8FlyoXeKYtFJbS2bDDPCB9SYG+B+CaoWzUjzsTBSU+mC2OF3v+0gKC/jlk2Xj38DAQdSEUcmqCV5TFN7dwuO3sFElGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RNFAF1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": "RandomState(MT19937)"}, "n_envs": 1, "num_timesteps": 1500000, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652052629.6216357, "learning_rate": 0.0001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8aNuLrHEMthZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAD1ve7444q48DvtwO5Sn4Lmnxi6+Z2gvugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAMN4e74F9q48XRtcu2u80zmsvS6+VGyROgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_episode_num": 3140, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVbhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIteGwNPDqZkCUhpRSlIwBbJRNJwOMAXSUR0CosMrgflp5dX2UKGgGaAloD0MIHAjJAqbBbECUhpRSlGgVTQwCaBZHQKiyryksSTR1fZQoaAZoCWgPQwjmIr4Ts14UQJSGlFKUaBVN6ANoFkdAqLaaV6eGwnV9lChoBmgJaA9DCLJoOjsZ7mhAlIaUUpRoFU2gAmgWR0CoufsMy8BddX2UKGgGaAloD0MIHJWbqKVFcECUhpRSlGgVS+JoFkdAqLq3ZRKpUHV9lChoBmgJaA9DCPHz34PX5iTAlIaUUpRoFUt/aBZHQKi7GE/0NBp1fZQoaAZoCWgPQwgaNPRP8DZlQJSGlFKUaBVN6ANoFkdAqL7A0dilSHV9lChoBmgJaA9DCDBl4IAWXmFAlIaUUpRoFU1WA2gWR0CowlmkWRA9dX2UKGgGaAloD0MIjuVd9YDJQ0CUhpRSlGgVTegDaBZHQKjIe8+Royt1fZQoaAZoCWgPQwh319mQfyb0v5SGlFKUaBVN6ANoFkdAqM5TbzshPnV9lChoBmgJaA9DCF653jZTpF5AlIaUUpRoFU3oA2gWR0Co0o+lj3EidX2UKGgGaAloD0MIlX7C2a05aECUhpRSlGgVTYwCaBZHQKjWB8FY+0R1fZQoaAZoCWgPQwhyGTc10OxsQJSGlFKUaBVN2wFoFkdAqNf90YCQtHV9lChoBmgJaA9DCIcYr3lVbGtAlIaUUpRoFU06AmgWR0Co2jneJpFkdX2UKGgGaAloD0MIH4ZWJ+fzbkCUhpRSlGgVTUYBaBZHQKjbUcy31Bd1fZQoaAZoCWgPQwgMI72o3T8uQJSGlFKUaBVN6ANoFkdAqN97qUu+RHV9lChoBmgJaA9DCCI4LuOmT21AlIaUUpRoFUvzaBZHQKjgSbnX/YJ1fZQoaAZoCWgPQwgwvJLkuc9rQJSGlFKUaBVNhAFoFkdAqOG7hisnzHV9lChoBmgJaA9DCK4Mqg3O22NAlIaUUpRoFU2TAmgWR0Co5MS3solVdX2UKGgGaAloD0MIs0XSbnTgZ0CUhpRSlGgVTX0CaBZHQKjnkrgflp51fZQoaAZoCWgPQwhoQL0ZNUhoQJSGlFKUaBVNNQJoFkdAqOo0hA4XGnV9lChoBmgJaA9DCPaWcr5YWWdAlIaUUpRoFU3LAmgWR0Co7SEA5q/NdX2UKGgGaAloD0MIiWAcXDoyYkCUhpRSlGgVTbkDaBZHQKjyKHtWuHN1fZQoaAZoCWgPQwiD91W5UKxuQJSGlFKUaBVLs2gWR0Co8rNuLrHEdX2UKGgGaAloD0MIm+RH/Aoda0CUhpRSlGgVTeYCaBZHQKj1PVYISlF1fZQoaAZoCWgPQwi8yW/RSfVmQJSGlFKUaBVNnAJoFkdAqPhNklNUO3V9lChoBmgJaA9DCNDQP8HFRW5AlIaUUpRoFU26AWgWR0Co+djpLVWkdX2UKGgGaAloD0MIBi/6CtJnbECUhpRSlGgVS+NoFkdAqPqQuAZsK3V9lChoBmgJaA9DCNMW1/jMqWxAlIaUUpRoFU0lAWgWR0Co+4y2H+IedX2UKGgGaAloD0MIqz5XWzHOZ0CUhpRSlGgVTfwBaBZHQKj9f5TqB3B1fZQoaAZoCWgPQwi1cFmFzWBMQJSGlFKUaBVN6ANoFkdAqQG4b4rSVnV9lChoBmgJaA9DCGIRww5j6FDAlIaUUpRoFU1SAmgWR0CpA9iVrylOdX2UKGgGaAloD0MIy0i9p3IuPUCUhpRSlGgVTegDaBZHQKkLQcsDnvF1fZQoaAZoCWgPQwghQIaOHYNpQJSGlFKUaBVN9wFoFkdAqQ1VVghKUXV9lChoBmgJaA9DCFdD4h7LaGxAlIaUUpRoFU0IAWgWR0CpDjiYkVvddX2UKGgGaAloD0MIMNXMWgorb0CUhpRSlGgVTZwDaBZHQKkSgHEdeY51fZQoaAZoCWgPQwj5Tsx6saNsQJSGlFKUaBVNQQFoFkdAqROzORkmQnV9lChoBmgJaA9DCJ9afXXVG21AlIaUUpRoFU3vAWgWR0CpFceaBqbjdX2UKGgGaAloD0MI9Wc/UkSQQECUhpRSlGgVS31oFkdAqRYoMnZ00XV9lChoBmgJaA9DCFGf5A6b6FBAlIaUUpRoFUu7aBZHQKkWtwcYIjZ1fZQoaAZoCWgPQwjpRlhUxGBuQJSGlFKUaBVLn2gWR0CpFy93jdYXdX2UKGgGaAloD0MIIEWduYcSb0CUhpRSlGgVTTsCaBZHQKkZQ+UyHmB1fZQoaAZoCWgPQwjB4QURqU5sQJSGlFKUaBVNKwFoFkdAqRpLQLNOd3V9lChoBmgJaA9DCAuz0M5phHFAlIaUUpRoFUvJaBZHQKka6curZJ11fZQoaAZoCWgPQwgZAKq4cVFuQJSGlFKUaBVLomgWR0CpG2KHwgDBdX2UKGgGaAloD0MISRRa1v1WZECUhpRSlGgVTckCaBZHQKke1ayKNyZ1fZQoaAZoCWgPQwir56T3DX5pQJSGlFKUaBVN9gJoFkdAqSI2mYSg5HV9lChoBmgJaA9DCFK2SNoN6WBAlIaUUpRoFU3oA2gWR0CpJm9fCyhSdX2UKGgGaAloD0MIRx0dVyPaZECUhpRSlGgVTQcDaBZHQKkppQAMlTp1fZQoaAZoCWgPQwgdPulEAh1sQJSGlFKUaBVNrQFoFkdAqSsuGATZhHV9lChoBmgJaA9DCNYBEHf18GpAlIaUUpRoFU02AmgWR0CpLZVQyhzvdX2UKGgGaAloD0MI/Io1XGQQcECUhpRSlGgVS65oFkdAqS4aqS5iE3V9lChoBmgJaA9DCM8u3/qwNlhAlIaUUpRoFU3oA2gWR0CpMlSTINmUdX2UKGgGaAloD0MI4GjHDb9UbkCUhpRSlGgVTaMBaBZHQKkzzIre67N1fZQoaAZoCWgPQwjLviuC/2FrQJSGlFKUaBVNmwFoFkdAqTVYDifg8HV9lChoBmgJaA9DCKm/XmHBMmtAlIaUUpRoFU0zAWgWR0CpNmSofjjrdX2UKGgGaAloD0MIAI49e64raECUhpRSlGgVTT8CaBZHQKk4dZ7ojfN1fZQoaAZoCWgPQwiRe7q64/BuQJSGlFKUaBVLq2gWR0CpOPaeoUBXdX2UKGgGaAloD0MIxsA6jp85bUCUhpRSlGgVS7RoFkdAqTl9+CsfaHV9lChoBmgJaA9DCNhkjXqIxibAlIaUUpRoFU3oA2gWR0CpP3GNR3vAdX2UKGgGaAloD0MI8+LEVzuaZECUhpRSlGgVTVgDaBZHQKlDKIu5BkZ1fZQoaAZoCWgPQwhPWOIB5ZxtQJSGlFKUaBVNvgFoFkdAqUT1pAUtZnV9lChoBmgJaA9DCHb9gt0wEXNAlIaUUpRoFU0hAWgWR0CpReI60Y0mdX2UKGgGaAloD0MIk4ychb2Ka0CUhpRSlGgVTRsBaBZHQKlG0z2vjfh1fZQoaAZoCWgPQwj8witJHiRsQJSGlFKUaBVNdwFoFkdAqUgfXoTwlXV9lChoBmgJaA9DCE4mbhXEnG9AlIaUUpRoFUvnaBZHQKlI3YISlFd1fZQoaAZoCWgPQwh5BaInpaBxQJSGlFKUaBVLkmgWR0CpSU7iZOSGdX2UKGgGaAloD0MIcGHdePcwbECUhpRSlGgVS9doFkdAqUn9yq+8G3V9lChoBmgJaA9DCKZ9c3/1IVNAlIaUUpRoFU3oA2gWR0CpTiniWE9MdX2UKGgGaAloD0MIE5z6QHKobkCUhpRSlGgVTUsBaBZHQKlPW/1QIld1fZQoaAZoCWgPQwj4xhAA3AhwQJSGlFKUaBVLm2gWR0CpT9bIcR16dX2UKGgGaAloD0MIcegtHl63a0CUhpRSlGgVTZYDaBZHQKlT5h8Yyft1fZQoaAZoCWgPQwjjN4WVCkoHwJSGlFKUaBVN6ANoFkdAqVjAJPZZjnV9lChoBmgJaA9DCGNfsvFgFG1AlIaUUpRoFU2RAWgWR0CpWkdzXBgvdX2UKGgGaAloD0MItcAeEyklYECUhpRSlGgVTegDaBZHQKleqQQL/jt1fZQoaAZoCWgPQwgiUP2DSLpsQJSGlFKUaBVN8AJoFkdAqWG90/4ZdnV9lChoBmgJaA9DCFBz8iKTgGlAlIaUUpRoFU25AmgWR0CpZWZLRKHxdX2UKGgGaAloD0MIsoAJ3DpkbECUhpRSlGgVTbMCaBZHQKlozVMmF8J1fZQoaAZoCWgPQwigTnl0o45kQJSGlFKUaBVN6ANoFkdAqWyLsjVx0nV9lChoBmgJaA9DCC17Eticcl9AlIaUUpRoFU3DA2gWR0CpcUuk1uR+dX2UKGgGaAloD0MIe6Lrwg/Nb0CUhpRSlGgVTRABaBZHQKlyLbhWHUN1fZQoaAZoCWgPQwj9iF+xBvtqQJSGlFKUaBVNVQFoFkdAqXN5DohY/3V9lChoBmgJaA9DCBoUzQNY1GtAlIaUUpRoFU2iAWgWR0CpdRNxdY4idX2UKGgGaAloD0MIDMhe7/6YbkCUhpRSlGgVTV0BaBZHQKl2Wl41P311fZQoaAZoCWgPQwi9VGzM67AhQJSGlFKUaBVN6ANoFkdAqXs4sPJ7s3V9lChoBmgJaA9DCI/GoX4XW21AlIaUUpRoFU2SAWgWR0CpfOfxc3VDdX2UKGgGaAloD0MIrvVFQtuBckCUhpRSlGgVTRYBaBZHQKl90gPEsJ91fZQoaAZoCWgPQwj9L9eiBeZvQJSGlFKUaBVNogFoFkdAqX8zIV/MGHV9lChoBmgJaA9DCNv5fmq8ZmZAlIaUUpRoFU3aAmgWR0Cpgi4c/+sHdX2UKGgGaAloD0MI71cBvltqb0CUhpRSlGgVS6BoFkdAqYKneizsyHV9lChoBmgJaA9DCLckB+zqYmtAlIaUUpRoFU1mAmgWR0CphQJtBOYZdX2UKGgGaAloD0MIT+eKUsIJZUCUhpRSlGgVTaADaBZHQKmJEchkiEB1fZQoaAZoCWgPQwhozvqUY3JuQJSGlFKUaBVNTgFoFkdAqYo2QGOdXnV9lChoBmgJaA9DCNSBrKdW3mtAlIaUUpRoFU2JAWgWR0Cpi7OBtk4FdX2UKGgGaAloD0MIDqFKzZ4Bb0CUhpRSlGgVS/9oFkdAqYyPsqril3V9lChoBmgJaA9DCHNH/8s173FAlIaUUpRoFU0DAWgWR0CpjV0Uwi7kdX2UKGgGaAloD0MIa5xNRwAbN0CUhpRSlGgVTegDaBZHQKmRjVMmF8J1fZQoaAZoCWgPQwjrAfOQKX1eQJSGlFKUaBVNxANoFkdAqZZDUb1h9nV9lChoBmgJaA9DCPDAAMIHY2VAlIaUUpRoFU08A2gWR0Cpmj0mlZX/dX2UKGgGaAloD0MIeJrMeFtVM0CUhpRSlGgVTegDaBZHQKmeKCI1tO51ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 362500, "buffer_size": 50000, "batch_size": 1024, "learning_starts": 50000, "tau": 0.99, "gamma": 0.99, "gradient_steps": 1, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==", "__module__": "stable_baselines3.common.buffers", "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device:\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "<function ReplayBuffer.__init__ at 0x7f6eeb002710>", "add": "<function ReplayBuffer.add at 0x7f6eeb0027a0>", "sample": "<function ReplayBuffer.sample at 0x7f6eeb002830>", "_get_samples": "<function ReplayBuffer._get_samples at 0x7f6eeb0028c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f6eeb04fd20>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLBGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "actor": null, "use_sde_at_warmup": false, "exploration_initial_eps": 0.9, "exploration_final_eps": 0.01, "exploration_fraction": 0.1, "target_update_interval": 10000, "_n_calls": 1500000, "max_grad_norm": 10, "exploration_rate": 0.01, "exploration_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVYwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsESxNDLGQBfAAYAIgBawRyEIgAUwCIAmQBfAAYAIgAiAIYABQAiAEbABcAUwBkAFMAlE5LAYaUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEtuQwYAAQwBBAKUjANlbmSUjAxlbmRfZnJhY3Rpb26UjAVzdGFydJSHlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpRoHilSlGgeKVKUh5R0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCR9lH2UKGgZaA6MDF9fcXVhbG5hbWVfX5SMG2dldF9saW5lYXJfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lChoC4wIYnVpbHRpbnOUjAVmbG9hdJSTlIwGcmV0dXJulGgwdYwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBqMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP4R64UeuFHuFlFKUaDhHP7mZmZmZmZqFlFKUaDhHP+zMzMzMzM2FlFKUh5SMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ishan_dqn_lunar_lander.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c3f943856c2fe8d5a454e0c32b3c7866d37232308d4300eeb2192b70975f761b
|
3 |
+
size 110956
|
ishan_dqn_lunar_lander/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ishan_dqn_lunar_lander/data
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.dqn.policies",
|
6 |
+
"__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function DQNPolicy.__init__ at 0x7f6eeafaab90>",
|
8 |
+
"_build": "<function DQNPolicy._build at 0x7f6eeafaac20>",
|
9 |
+
"make_q_net": "<function DQNPolicy.make_q_net at 0x7f6eeafaacb0>",
|
10 |
+
"forward": "<function DQNPolicy.forward at 0x7f6eeafaad40>",
|
11 |
+
"_predict": "<function DQNPolicy._predict at 0x7f6eeafaadd0>",
|
12 |
+
"_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7f6eeafaae60>",
|
13 |
+
"set_training_mode": "<function DQNPolicy.set_training_mode at 0x7f6eeafaaef0>",
|
14 |
+
"__abstractmethods__": "frozenset()",
|
15 |
+
"_abc_impl": "<_abc_data object at 0x7f6eeafeae40>"
|
16 |
+
},
|
17 |
+
"verbose": 0,
|
18 |
+
"policy_kwargs": {},
|
19 |
+
"observation_space": {
|
20 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
21 |
+
":serialized:": "gAWVJgwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaDCMBXN0YXRllH2UKIwDa2V5lGgSKJbACQAAAAAAAPYv1HsK/f3P4s1yGoZ0D5PSdJobqR6qyDaFzO3koE0gHt3uUr874z4xF8hNoks8Z0YqeylNJCIXweufH267ktIymI6m1oKHn27FhR8K9DCB97GgmrH+bdoozam8U8yTX5X4nUz5hv+qYiZPDZf9opxxXW4ScNNU0iSKrfttCJlt46EWn5Afj1/QLWYw5dvC2n3fGttGes2GEfNnRY3Dy54gMubGPPpaBuSVUUNBzoOQTOfnlkQW+2TTpGMvDyqhzRBVmfO49uLxeeOIqxl/5oIFQZF3a4t4HfC6wS6+aLBKoA1Y0zoKvYfT2ZAAwNmhSOw1JM7GJbZqhvK5IFbB6hK+PGzayBITMzleSQCMVD0ToeqRdxKntx2Q/GDAPQKrC4ieMTHPf7TgAZvC85+Bl3RHbLxtMYo5qrA9MikFLTbM5BwSMCBL8MeplVwnUMkWTevjafd55J0OAc9UntCE6niayBzFzUzf/lm2yJuKgGWHCTf57ND9nMFumcDfDZPANEiUklfAM4DtE4ziQPJhdW9PCvQClDkZ1K2Ur5BG/dxZXnujg6yoV08A1MhTyv+E9VCBOP70G88gnoGvuPi7UlYV3hoR5VQN9aufi4RaqS8sRTp2h0txlejhEM/25y3jUhbnz85y5LeYja97ffX4T7aCWNyOJvkjIIfgNEn6ZzGQ40a5TpeuKTqkQ3B7VqLzCS77wT9DU+NzLSGJEJLiDKWxrGM8LRQG1P6CjvW/XMwAN4LiFmBH25A7UM/mXDSFPV43AMO315nkdgxMWal22rioAqWRjzbXfMptsc6cJqjj7EPp3udwMW5iNqZe0Pgf7u0Dtw0z1bivex0WFMiVO/mjPEvHIuAre4NBWyf4fY0WR3zQ4yZosdKrr/91B8fuqMn4M4b1omAvTvamV4EZlS46fb3/K4J7a49/3fhcMNO3BWwBnqjrwfL6K594pBX/Qlcgq8diyy+7CVpNv0LV1FfcakVFdr0EzPkRJpN9mn3wvkN5A7nhJcg2az4fHmPM9AtwaHqUmNw+mWybiffZ5LqWWRXAuBVbaCcqHhToLXANn1vQDHXCX56crSpkkg63E1VOI12cRbhK9Ttu0kn4Gy2lxi52F+R97gPvm2FCvCM0tfhu4IHghKjtbpuZXyamj6FPQHSkjQX7+Qanzza/K+iwf9a33S0iN2nJTWhAgiObkutSbCbUv+lwzPwtuUmm2noP6xo+/hJdbcAmaCUH9WT7Val4ps1XhAQUSbS0IMZ1kJ33edP7d99QBD85ITgxb36xgYyqbnCGLK0sB7Uz4+36TZ14ti/6fVnOW4KX3QjPZ1l/SvBpJbOufu8AOS4xpP2l9RW6ofqom65yx/ZDS9Jq5rBSITJOCrWd9RaefiQo128JS5Uzrvs7NqqOyFiHjaM4MAXwik0NcybPndUjsIGdGLIMNt3daBxzJL9zgHjn905V8YmRrXH28/be9T2QCXHjFrLLOwdU9Ag+e3tLHYyAoFZ76tihXUumMOPkm0E4bQlWgcbScsaU0wbY9g8vm8JzVopS4TwqFGsH9ZX4jtbaHJ51ZkdGl6WVQobSf3J3uR32paDZREq3cyYohzuVXhXC6S/7cFwGJLhlyLCurdTJwHETOM+5zUB7M6mgxk3U+NWu6TlLeSoveOuCLYB96BuilH2OBjNySLrJvVVcOYb1lmmPPuJrc4hz0+9eTwViBcic6I7HPrjrkTZrlS1t/2c//Iwi2AZ4mdumzsxlw84FJSDZ8rHF2om0BmHrJbY+juVMKadcmhPut9nSb00GhVmzXRmRM4kNG1aD2WI7UZt19dRVLpQ+rTySXfERZBfhl0QzIRLXyW3BObYDnpsp3A4HF+VShwlFtvlnGkH6LkofX/kkjpfy5845dW9+rk/jGX46OE/X39a0eoDTQGXG0DK3UGnkVuYdELjfYcWJmBwOmAmhNzwR4gggdlBDols1FRYQ+EwU0nWJLTZglQuJVu6lp436Xhdrap99DZjPOaiCRZXKmad/blq4UIuy292Q5vjN1PXZ445dY2+XGY7N/NeLCI0FKMW/8XGRJcyqc2AvBcJ7dnm4r1egQbcnx4rf0STmLOqoUF2kTtqoKSD/wlb/aCs6a1bv92uFyAgV/s8Tdh8Fw30pHpDGag/+yCQxVRkR8woOVVMbXJcuxqNRz7HjaoZ7DOjHxt8o99QYce8UzfFnU9ieKeqqjDc1GDgy2QiZq7SdWuPtpB3t+DLXfDE4/r65A7kUHOlUgZortLj0aVAPqlyyyZY6XHE3WsIrFm8QzSe+UbP7MFuPJ219L1y0NRjzYvOIpoi2osWRdasyDK0yAmJxo4O6VsfqFT4LLLVmF6BCEw+OrDNueFRKexMEYn1DK1r7SArnHx9Y3OJtF/MoSVclwJxuLBJLeqjPwt0I8T0UWmUlVH4pDKxFepJe0LrFBjdjy3cU8iD1QdsfPpaZzWPXR+k84CclhHicBz7JfrcZzaNCGi8XqADS3dUSNIJqw+gUjXhInJbywmwMnFz/OiGKgV80bqaCxrgv4meV3a60SW+jZvhDRvGc5XTkp0JLKfTz0wg7U3RMLVSIdQzlOFkjpauZonRO/tyMbP4Ul63MtanCNWXzpu6+lotJz9UDP5vfxE40VzV+UOcv+dTYx/m1YRobPCfUI9qxLo5AbommGvTLoZhLYeE+zzDNhXXMDee0kHnTp/KulUKcpsIGVnkhJJqIHs2ajsoCXghthrQyhnXNW9aH6WBy8KfIoqHaUpEuU/+TUT2HAa0M3Cw/QKbT0MJZd9w4vVdGG+pwfgQSHF+CHHKExEQGyf/Aps7M285T/CxrFuCTlaiJj0TKf3EljQYuYbQfnpg3eNurxI1FZ2QilIGpwbUr7hEt4yulXuSDxo4S2zbMaz67g9LB6gtWfWqoNsXoXyJHy4oI2tyU1kpoD7th1jTjgVOX5Fdi1N1F+smMVunreB3U1nCJqrwrw6QHeW2SksVFXNP0zg4lal6wdiTijJyn8cFMBHYIYddPoqJ0q+507iZKgNaqAHN+uruf358GfYpj/AfDELkEIIa057cvPVzEdot/IzigyC60Kh6Nj+Yfnv1R0GFEtEKUQhQjoL9553PshJw5xnvjoGUwhdikqrm9YmbM/IB3Ow27ZJZ6H9LAEkqpDeZAe9j0f7yEwZEjEfxbG1bBZt/HM8gDSd9b5zUQX5tE3zB0Dw4Hgk7IMpxLcb28yOyBRpmwkFyMZLU8iP5ymKPY4pYX5Atp1i9b7C50zGZ0k63yM4dnygfbtkL5YoeCbeckNaOeikjiTV+926kc2H4z2r5mvkpTkDOzreiCFpRoB4wCdTSUiYiHlFKUKEsDaAtOTk5K/////0r/////SwB0lGJNcAKFlGgVdJRSlIwDcG9zlEsUdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YnViLg==",
|
22 |
+
"dtype": "float32",
|
23 |
+
"_shape": [
|
24 |
+
8
|
25 |
+
],
|
26 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
27 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
28 |
+
"bounded_below": "[False False False False False False False False]",
|
29 |
+
"bounded_above": "[False False False False False False False False]",
|
30 |
+
"_np_random": "RandomState(MT19937)"
|
31 |
+
},
|
32 |
+
"action_space": {
|
33 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
34 |
+
":serialized:": "gAWVLwsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAAQmzXjLqBkOZMsT+HI9sE8dJDhFfYteEKVR7nSgtLLWTlUOeimYDqYZ2h1WOuHuB3AwVPUZZZmGye3H9zsmKdBiScHdSv/xy83J8CeRX12k2EFyGSXXMfY4eBNVc+SggT3BPJC97h2vyCPUHRkyURBN0hDQWaizDqR6JhvH5OQA1hNCdHFbLsuBnN2PnLoItWHY36BDL31tDcbURIsfGXb4LcVbU2pkRxMkZyPOoQjbThhqqWOJnNuWvbh6c9Jcej/5DiFras+kDi/CbK2/QNY2ohBVGRJhFg/cmkL3rM6igWbJ57h8Ktcck4vUEqSYvEoCKNF1F2MnNXTpP4VDGrdM0/XL72/lTrsnXMCLM+31AWIO8KhmDz81kHJN3mA9fh3FUK16GSmkUVEEu19FeENsKCwncMEeSKNr7G8Jp4zckcp4WHNeNUd4ZvO5eMv3LP8poazIznWQ9wAaSyqMxhMYRTciWNF2VhrADIigH4qrW7gzEeluVR778lBjyYZNpv/7UKPJjdOToPAYp7BqMpkwPBbqUNltRwZu/O6SzQF4HkWJKeGgz7m1AzJWBQfVqV7zCAZiGBoDO+kEU/lAtaUSFi28VKzfZVv+gg9I0EVSHhmPjJpBX5dRM8EwLSu2sYnI/2e6xwy9dGwgYdYaqX1TfGXb0ELWJOeCKgl/Sflk/w12HviNMjcuXUNvPQoYSklcQwhJCwzDBTEI++RHJHT08QoxIDMMhLpLq+nhnLEPb1X4/+ummljXglYjWECjKYHDz92UiJFa0bGQBRGJlZCV9fgSyPP0LUcn3MmAG/JTEpJi4/65UQ1WAx4kqbkWxp9fnuHSoZDyuiX2+sBr4R5JqRlTvNcnMbrZYHecs3H4hv3PG67XCT4CwYpIPCS67M8cnDaQ1dvwqFC5K8BR+8AbsygDkwqJFgCGqrpox8M2MfuyPpH5COQTE6XvXHSR3rOmImJZ7ORpiRHfSR4LBGFiuEPPt0twbFlm2BIPA61x/J6dDcjNEOgilwrL0e9PUpCHyuqZrqZ98PAVcjcZb8v88xTOYbom8bKSjQnEeup461BvXP838b1im+YNaN9eK6kQBox/mSlQbKYRN1fEdiyHihc/9hKC4acnpLdgr3Go6fxjUfCjVApmyEsU9GKMUsyab2r3Mqv3EijpoqslvybpaXHwdlTFy9BdNHo2UbIOPnmVvOPeiOjkAF/CrXPQctLzCxiY8VLTwaJOSsBdmZnTyIL/VV7aEUlht0Elj6bRVSlpLjPztbM1tF3VbQA3u/IVrIER9qPkx2FZcWj3lCgkSoKK2yRKSBQV+FytKvKxcKRwyAovPwZHwW9Lc9hn623gx5oHXbcvPPqvycEnnA1qMW9bNacfDKxZ0bjBsyl4l08zSfhIGKqGanfbZ+jVwmGCJ5lvN/lkaOD6BghRJ/w1JlZ+QICazVpztApGNqW/HFpVCX7jy7esbkkh/tgkhBOKtpDie2GZ4xpVN+hJbMWdOP3nmXS44ryk5yRGvN6DYn8o00lPVxpKoAMpUmKEnBK6rKHw0NGbZTN+2l0Muhi19cqrVMESVgB0MgLXBb+36NwI0eP4JewQ35g+DKf1PVQpTATyJtq/3G93UEogfiW7vi3a6PELo+b9gDXKwnnOYst6nnXUtq5sv0CVUtmTE7mFRevnvO9fZlHXkA957itTa+9D5wMqsWbHuehtxw/2HofWbh2IbK6cXBAiu/423Ee2wmT287Y0nvF65RoV89RybJB13VHGZ76KPLb3IMPQ9uDeG040LHgq1rsFuUcuaPFRw1g+OsAHhB6RUbnIgEMH+sB8MRewwxFq+3OLxY81MqJXk/4VD+vymAG4lhP6qyvxklnKuKuXL49TTbbnDAPJXzOwf175bvfIwAkMf2mFSzWvF40bnIZF4iNPIYqPgOFYDW3rE+VZd+50Ry9iEab7tvHwZoSOX2mZLbFFXP9VJlO6VanhcCxml8kRpmGhMhmzaGz3oQOe9MgNn62/CW5QrncvQb5mlf0e0HE8DA459A88mvVvQZcbx68R686HlQO5i6Zcehq/VBjujbWu/t01xnjb/OPSgPzLFnGeIOm0pkdVI9h0aAVo3au9T4CgNDr2iqAjNwRv17ov1dC4kIzxRJXvjwHYeMf66ua1Ox8FGWLqDTzaU/gkCmWx2uf9CTr4bf4KzBz8cmLOhxCzQafMERxVT7sVC0bcYlICiLtj6Qb5OmKsBqLYx1I/bbpQSWxHDl2q/U/iy6+kOLkGvG+aHVvfGLwPkS6m734qCrpYcqWjIpW4YdQbEbsy6EoQ/38YTus555mI3bx99s55NujFDCJNCleBqb6e+WjMiGJJEyEXrCRwvEZURgvhOG6QFiVGVjZi0dcdJ6JUJjPBvERsA67u6/woej2gK7ZT1Yj0yileqEXWjFSi9nHrQTALVTiWaQy3ZmCoEUD8DijKUGWo1j94iGEiEzH5AZWs2x+M3LYnt4AYa1teqYpwQ/XVReQJBNhtZV1PjNKqyn5JEYkK9o+d+QaERCHUVBUnQo3IIJM24WftdWqKpbFdK+ffeN8u1SdpDtiWXw8KHcBzXuahM1LJCWqW5h/eC4MjPgq4jbUN/+6OH9HEXTCDYzKsqj4YDaXERuVhX5hQ2KRR9Q1cQnBIXeDCWOd43dr8btQgXx+xJeBSZ/QLS0hSHRk1dU98s+cki0o44soflMApM6bNx+u8qItZv9OAY/L0iCrlCZMpDHjbOX1Vynuxl+Z3DRUSFgSeO3Z9fu9IbzZczLIyoF8w9dpnrypGKEIprJ8GSBIVVQoYTsMenDj8J0Gv/RBTtbaOE1QimhYth+r75QaPF4G1JbWbHAYjosHXPmNkOAkLbQLDJiKa9CZ/a96A4HVxSVjV1YLKmtT8Wp8geLyIi/F9EeW71LmbgxIf/+5y9UBywYw75IJXnG5BY/gXp9MwlXX72LIJD2dBtDU1C/RQmsBqXFAS02MZmygagl9kIonYALc2r0K22LzgOR64w2jw0RmS2M8/KOFlZrsrXfRUvqFRIQwxvhD+VeJILDc7UBnn5gUXOYIX/nVZOAqDxuGk9PdpxbJBMzpiOskRbLVvUlkA6KS5itZFIYXX1AcQz089rHlcCVRuRscWOLYvBlwdJ+wh44mQL4sI/r1DId+TOqEp0T9C9vNL812c2R8GYe0vlt2VAOev6ekLPD2Ps7mlD8I6aEID82ZfN5dAlq4nn30HF5Snlffaaytx7z8FlyoXeKYtFJbS2bDDPCB9SYG+B+CaoWzUjzsTBSU+mC2OF3v+0gKC/jlk2Xj38DAQdSEUcmqCV5TFN7dwuO3sFElGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RNFAF1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
|
35 |
+
"n": 4,
|
36 |
+
"_shape": [],
|
37 |
+
"dtype": "int64",
|
38 |
+
"_np_random": "RandomState(MT19937)"
|
39 |
+
},
|
40 |
+
"n_envs": 1,
|
41 |
+
"num_timesteps": 1500000,
|
42 |
+
"_total_timesteps": 1500000,
|
43 |
+
"_num_timesteps_at_start": 0,
|
44 |
+
"seed": null,
|
45 |
+
"action_noise": null,
|
46 |
+
"start_time": 1652052629.6216357,
|
47 |
+
"learning_rate": 0.0001,
|
48 |
+
"tensorboard_log": null,
|
49 |
+
"lr_schedule": {
|
50 |
+
":type:": "<class 'function'>",
|
51 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8aNuLrHEMthZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
52 |
+
},
|
53 |
+
"_last_obs": {
|
54 |
+
":type:": "<class 'numpy.ndarray'>",
|
55 |
+
":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAD1ve7444q48DvtwO5Sn4Lmnxi6+Z2gvugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
|
56 |
+
},
|
57 |
+
"_last_episode_starts": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_original_obs": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAMN4e74F9q48XRtcu2u80zmsvS6+VGyROgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_episode_num": 3140,
|
66 |
+
"use_sde": false,
|
67 |
+
"sde_sample_freq": -1,
|
68 |
+
"_current_progress_remaining": 0.0,
|
69 |
+
"ep_info_buffer": {
|
70 |
+
":type:": "<class 'collections.deque'>",
|
71 |
+
":serialized:": "gAWVbhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIteGwNPDqZkCUhpRSlIwBbJRNJwOMAXSUR0CosMrgflp5dX2UKGgGaAloD0MIHAjJAqbBbECUhpRSlGgVTQwCaBZHQKiyryksSTR1fZQoaAZoCWgPQwjmIr4Ts14UQJSGlFKUaBVN6ANoFkdAqLaaV6eGwnV9lChoBmgJaA9DCLJoOjsZ7mhAlIaUUpRoFU2gAmgWR0CoufsMy8BddX2UKGgGaAloD0MIHJWbqKVFcECUhpRSlGgVS+JoFkdAqLq3ZRKpUHV9lChoBmgJaA9DCPHz34PX5iTAlIaUUpRoFUt/aBZHQKi7GE/0NBp1fZQoaAZoCWgPQwgaNPRP8DZlQJSGlFKUaBVN6ANoFkdAqL7A0dilSHV9lChoBmgJaA9DCDBl4IAWXmFAlIaUUpRoFU1WA2gWR0CowlmkWRA9dX2UKGgGaAloD0MIjuVd9YDJQ0CUhpRSlGgVTegDaBZHQKjIe8+Royt1fZQoaAZoCWgPQwh319mQfyb0v5SGlFKUaBVN6ANoFkdAqM5TbzshPnV9lChoBmgJaA9DCF653jZTpF5AlIaUUpRoFU3oA2gWR0Co0o+lj3EidX2UKGgGaAloD0MIlX7C2a05aECUhpRSlGgVTYwCaBZHQKjWB8FY+0R1fZQoaAZoCWgPQwhyGTc10OxsQJSGlFKUaBVN2wFoFkdAqNf90YCQtHV9lChoBmgJaA9DCIcYr3lVbGtAlIaUUpRoFU06AmgWR0Co2jneJpFkdX2UKGgGaAloD0MIH4ZWJ+fzbkCUhpRSlGgVTUYBaBZHQKjbUcy31Bd1fZQoaAZoCWgPQwgMI72o3T8uQJSGlFKUaBVN6ANoFkdAqN97qUu+RHV9lChoBmgJaA9DCCI4LuOmT21AlIaUUpRoFUvzaBZHQKjgSbnX/YJ1fZQoaAZoCWgPQwgwvJLkuc9rQJSGlFKUaBVNhAFoFkdAqOG7hisnzHV9lChoBmgJaA9DCK4Mqg3O22NAlIaUUpRoFU2TAmgWR0Co5MS3solVdX2UKGgGaAloD0MIs0XSbnTgZ0CUhpRSlGgVTX0CaBZHQKjnkrgflp51fZQoaAZoCWgPQwhoQL0ZNUhoQJSGlFKUaBVNNQJoFkdAqOo0hA4XGnV9lChoBmgJaA9DCPaWcr5YWWdAlIaUUpRoFU3LAmgWR0Co7SEA5q/NdX2UKGgGaAloD0MIiWAcXDoyYkCUhpRSlGgVTbkDaBZHQKjyKHtWuHN1fZQoaAZoCWgPQwiD91W5UKxuQJSGlFKUaBVLs2gWR0Co8rNuLrHEdX2UKGgGaAloD0MIm+RH/Aoda0CUhpRSlGgVTeYCaBZHQKj1PVYISlF1fZQoaAZoCWgPQwi8yW/RSfVmQJSGlFKUaBVNnAJoFkdAqPhNklNUO3V9lChoBmgJaA9DCNDQP8HFRW5AlIaUUpRoFU26AWgWR0Co+djpLVWkdX2UKGgGaAloD0MIBi/6CtJnbECUhpRSlGgVS+NoFkdAqPqQuAZsK3V9lChoBmgJaA9DCNMW1/jMqWxAlIaUUpRoFU0lAWgWR0Co+4y2H+IedX2UKGgGaAloD0MIqz5XWzHOZ0CUhpRSlGgVTfwBaBZHQKj9f5TqB3B1fZQoaAZoCWgPQwi1cFmFzWBMQJSGlFKUaBVN6ANoFkdAqQG4b4rSVnV9lChoBmgJaA9DCGIRww5j6FDAlIaUUpRoFU1SAmgWR0CpA9iVrylOdX2UKGgGaAloD0MIy0i9p3IuPUCUhpRSlGgVTegDaBZHQKkLQcsDnvF1fZQoaAZoCWgPQwghQIaOHYNpQJSGlFKUaBVN9wFoFkdAqQ1VVghKUXV9lChoBmgJaA9DCFdD4h7LaGxAlIaUUpRoFU0IAWgWR0CpDjiYkVvddX2UKGgGaAloD0MIMNXMWgorb0CUhpRSlGgVTZwDaBZHQKkSgHEdeY51fZQoaAZoCWgPQwj5Tsx6saNsQJSGlFKUaBVNQQFoFkdAqROzORkmQnV9lChoBmgJaA9DCJ9afXXVG21AlIaUUpRoFU3vAWgWR0CpFceaBqbjdX2UKGgGaAloD0MI9Wc/UkSQQECUhpRSlGgVS31oFkdAqRYoMnZ00XV9lChoBmgJaA9DCFGf5A6b6FBAlIaUUpRoFUu7aBZHQKkWtwcYIjZ1fZQoaAZoCWgPQwjpRlhUxGBuQJSGlFKUaBVLn2gWR0CpFy93jdYXdX2UKGgGaAloD0MIIEWduYcSb0CUhpRSlGgVTTsCaBZHQKkZQ+UyHmB1fZQoaAZoCWgPQwjB4QURqU5sQJSGlFKUaBVNKwFoFkdAqRpLQLNOd3V9lChoBmgJaA9DCAuz0M5phHFAlIaUUpRoFUvJaBZHQKka6curZJ11fZQoaAZoCWgPQwgZAKq4cVFuQJSGlFKUaBVLomgWR0CpG2KHwgDBdX2UKGgGaAloD0MISRRa1v1WZECUhpRSlGgVTckCaBZHQKke1ayKNyZ1fZQoaAZoCWgPQwir56T3DX5pQJSGlFKUaBVN9gJoFkdAqSI2mYSg5HV9lChoBmgJaA9DCFK2SNoN6WBAlIaUUpRoFU3oA2gWR0CpJm9fCyhSdX2UKGgGaAloD0MIRx0dVyPaZECUhpRSlGgVTQcDaBZHQKkppQAMlTp1fZQoaAZoCWgPQwgdPulEAh1sQJSGlFKUaBVNrQFoFkdAqSsuGATZhHV9lChoBmgJaA9DCNYBEHf18GpAlIaUUpRoFU02AmgWR0CpLZVQyhzvdX2UKGgGaAloD0MI/Io1XGQQcECUhpRSlGgVS65oFkdAqS4aqS5iE3V9lChoBmgJaA9DCM8u3/qwNlhAlIaUUpRoFU3oA2gWR0CpMlSTINmUdX2UKGgGaAloD0MI4GjHDb9UbkCUhpRSlGgVTaMBaBZHQKkzzIre67N1fZQoaAZoCWgPQwjLviuC/2FrQJSGlFKUaBVNmwFoFkdAqTVYDifg8HV9lChoBmgJaA9DCKm/XmHBMmtAlIaUUpRoFU0zAWgWR0CpNmSofjjrdX2UKGgGaAloD0MIAI49e64raECUhpRSlGgVTT8CaBZHQKk4dZ7ojfN1fZQoaAZoCWgPQwiRe7q64/BuQJSGlFKUaBVLq2gWR0CpOPaeoUBXdX2UKGgGaAloD0MIxsA6jp85bUCUhpRSlGgVS7RoFkdAqTl9+CsfaHV9lChoBmgJaA9DCNhkjXqIxibAlIaUUpRoFU3oA2gWR0CpP3GNR3vAdX2UKGgGaAloD0MI8+LEVzuaZECUhpRSlGgVTVgDaBZHQKlDKIu5BkZ1fZQoaAZoCWgPQwhPWOIB5ZxtQJSGlFKUaBVNvgFoFkdAqUT1pAUtZnV9lChoBmgJaA9DCHb9gt0wEXNAlIaUUpRoFU0hAWgWR0CpReI60Y0mdX2UKGgGaAloD0MIk4ychb2Ka0CUhpRSlGgVTRsBaBZHQKlG0z2vjfh1fZQoaAZoCWgPQwj8witJHiRsQJSGlFKUaBVNdwFoFkdAqUgfXoTwlXV9lChoBmgJaA9DCE4mbhXEnG9AlIaUUpRoFUvnaBZHQKlI3YISlFd1fZQoaAZoCWgPQwh5BaInpaBxQJSGlFKUaBVLkmgWR0CpSU7iZOSGdX2UKGgGaAloD0MIcGHdePcwbECUhpRSlGgVS9doFkdAqUn9yq+8G3V9lChoBmgJaA9DCKZ9c3/1IVNAlIaUUpRoFU3oA2gWR0CpTiniWE9MdX2UKGgGaAloD0MIE5z6QHKobkCUhpRSlGgVTUsBaBZHQKlPW/1QIld1fZQoaAZoCWgPQwj4xhAA3AhwQJSGlFKUaBVLm2gWR0CpT9bIcR16dX2UKGgGaAloD0MIcegtHl63a0CUhpRSlGgVTZYDaBZHQKlT5h8Yyft1fZQoaAZoCWgPQwjjN4WVCkoHwJSGlFKUaBVN6ANoFkdAqVjAJPZZjnV9lChoBmgJaA9DCGNfsvFgFG1AlIaUUpRoFU2RAWgWR0CpWkdzXBgvdX2UKGgGaAloD0MItcAeEyklYECUhpRSlGgVTegDaBZHQKleqQQL/jt1fZQoaAZoCWgPQwgiUP2DSLpsQJSGlFKUaBVN8AJoFkdAqWG90/4ZdnV9lChoBmgJaA9DCFBz8iKTgGlAlIaUUpRoFU25AmgWR0CpZWZLRKHxdX2UKGgGaAloD0MIsoAJ3DpkbECUhpRSlGgVTbMCaBZHQKlozVMmF8J1fZQoaAZoCWgPQwigTnl0o45kQJSGlFKUaBVN6ANoFkdAqWyLsjVx0nV9lChoBmgJaA9DCC17Eticcl9AlIaUUpRoFU3DA2gWR0CpcUuk1uR+dX2UKGgGaAloD0MIe6Lrwg/Nb0CUhpRSlGgVTRABaBZHQKlyLbhWHUN1fZQoaAZoCWgPQwj9iF+xBvtqQJSGlFKUaBVNVQFoFkdAqXN5DohY/3V9lChoBmgJaA9DCBoUzQNY1GtAlIaUUpRoFU2iAWgWR0CpdRNxdY4idX2UKGgGaAloD0MIDMhe7/6YbkCUhpRSlGgVTV0BaBZHQKl2Wl41P311fZQoaAZoCWgPQwi9VGzM67AhQJSGlFKUaBVN6ANoFkdAqXs4sPJ7s3V9lChoBmgJaA9DCI/GoX4XW21AlIaUUpRoFU2SAWgWR0CpfOfxc3VDdX2UKGgGaAloD0MIrvVFQtuBckCUhpRSlGgVTRYBaBZHQKl90gPEsJ91fZQoaAZoCWgPQwj9L9eiBeZvQJSGlFKUaBVNogFoFkdAqX8zIV/MGHV9lChoBmgJaA9DCNv5fmq8ZmZAlIaUUpRoFU3aAmgWR0Cpgi4c/+sHdX2UKGgGaAloD0MI71cBvltqb0CUhpRSlGgVS6BoFkdAqYKneizsyHV9lChoBmgJaA9DCLckB+zqYmtAlIaUUpRoFU1mAmgWR0CphQJtBOYZdX2UKGgGaAloD0MIT+eKUsIJZUCUhpRSlGgVTaADaBZHQKmJEchkiEB1fZQoaAZoCWgPQwhozvqUY3JuQJSGlFKUaBVNTgFoFkdAqYo2QGOdXnV9lChoBmgJaA9DCNSBrKdW3mtAlIaUUpRoFU2JAWgWR0Cpi7OBtk4FdX2UKGgGaAloD0MIDqFKzZ4Bb0CUhpRSlGgVS/9oFkdAqYyPsqril3V9lChoBmgJaA9DCHNH/8s173FAlIaUUpRoFU0DAWgWR0CpjV0Uwi7kdX2UKGgGaAloD0MIa5xNRwAbN0CUhpRSlGgVTegDaBZHQKmRjVMmF8J1fZQoaAZoCWgPQwjrAfOQKX1eQJSGlFKUaBVNxANoFkdAqZZDUb1h9nV9lChoBmgJaA9DCPDAAMIHY2VAlIaUUpRoFU08A2gWR0Cpmj0mlZX/dX2UKGgGaAloD0MIeJrMeFtVM0CUhpRSlGgVTegDaBZHQKmeKCI1tO51ZS4="
|
72 |
+
},
|
73 |
+
"ep_success_buffer": {
|
74 |
+
":type:": "<class 'collections.deque'>",
|
75 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
76 |
+
},
|
77 |
+
"_n_updates": 362500,
|
78 |
+
"buffer_size": 50000,
|
79 |
+
"batch_size": 1024,
|
80 |
+
"learning_starts": 50000,
|
81 |
+
"tau": 0.99,
|
82 |
+
"gamma": 0.99,
|
83 |
+
"gradient_steps": 1,
|
84 |
+
"optimize_memory_usage": false,
|
85 |
+
"replay_buffer_class": {
|
86 |
+
":type:": "<class 'abc.ABCMeta'>",
|
87 |
+
":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
|
88 |
+
"__module__": "stable_baselines3.common.buffers",
|
89 |
+
"__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device:\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
|
90 |
+
"__init__": "<function ReplayBuffer.__init__ at 0x7f6eeb002710>",
|
91 |
+
"add": "<function ReplayBuffer.add at 0x7f6eeb0027a0>",
|
92 |
+
"sample": "<function ReplayBuffer.sample at 0x7f6eeb002830>",
|
93 |
+
"_get_samples": "<function ReplayBuffer._get_samples at 0x7f6eeb0028c0>",
|
94 |
+
"__abstractmethods__": "frozenset()",
|
95 |
+
"_abc_impl": "<_abc_data object at 0x7f6eeb04fd20>"
|
96 |
+
},
|
97 |
+
"replay_buffer_kwargs": {},
|
98 |
+
"train_freq": {
|
99 |
+
":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
|
100 |
+
":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLBGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
|
101 |
+
},
|
102 |
+
"actor": null,
|
103 |
+
"use_sde_at_warmup": false,
|
104 |
+
"exploration_initial_eps": 0.9,
|
105 |
+
"exploration_final_eps": 0.01,
|
106 |
+
"exploration_fraction": 0.1,
|
107 |
+
"target_update_interval": 10000,
|
108 |
+
"_n_calls": 1500000,
|
109 |
+
"max_grad_norm": 10,
|
110 |
+
"exploration_rate": 0.01,
|
111 |
+
"exploration_schedule": {
|
112 |
+
":type:": "<class 'function'>",
|
113 |
+
":serialized:": "gAWVYwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsESxNDLGQBfAAYAIgBawRyEIgAUwCIAmQBfAAYAIgAiAIYABQAiAEbABcAUwBkAFMAlE5LAYaUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEtuQwYAAQwBBAKUjANlbmSUjAxlbmRfZnJhY3Rpb26UjAVzdGFydJSHlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpRoHilSlGgeKVKUh5R0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCR9lH2UKGgZaA6MDF9fcXVhbG5hbWVfX5SMG2dldF9saW5lYXJfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lChoC4wIYnVpbHRpbnOUjAVmbG9hdJSTlIwGcmV0dXJulGgwdYwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBqMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP4R64UeuFHuFlFKUaDhHP7mZmZmZmZqFlFKUaDhHP+zMzMzMzM2FlFKUh5SMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
114 |
+
}
|
115 |
+
}
|
ishan_dqn_lunar_lander/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ae5fbfbeec4cede89d91f130ad88ab8a4aad3f71f2c8d687bdefd7d141608134
|
3 |
+
size 43265
|
ishan_dqn_lunar_lander/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ed6ad0450e142f81d83ffd3e17169f807384ed4b285103934f3ed96cb68ed904
|
3 |
+
size 44033
|
ishan_dqn_lunar_lander/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ishan_dqn_lunar_lander/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:26de53e67cecdd37ed240cab9b03563a5994d60ad4870198ba2dcc86d4536af2
|
3 |
+
size 191511
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 167.08045521990226, "std_reward": 79.19141170577636, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-09T00:27:45.321964"}
|