edichief commited on
Commit
e323a07
·
2 Parent(s): cf79cce 988fba0

Merge branch 'main' of https://huggingface.co/edichief/en_healthsea

Browse files
Files changed (1) hide show
  1. README.md +21 -35
README.md CHANGED
@@ -2,9 +2,9 @@
2
  tags:
3
  - spacy
4
  - token-classification
 
5
  language:
6
  - en
7
- license: mit
8
  model-index:
9
  - name: en_healthsea
10
  results:
@@ -14,39 +14,30 @@ model-index:
14
  metrics:
15
  - name: NER Precision
16
  type: precision
17
- value: 0.0
18
  - name: NER Recall
19
  type: recall
20
- value: 0.0
21
  - name: NER F Score
22
  type: f_score
23
- value: 0.0
24
- - task:
25
- name: SENTER
26
- type: token-classification
27
- metrics:
28
- - name: SENTER Precision
29
- type: precision
30
- value: 1.0
31
- - name: SENTER Recall
32
- type: recall
33
- value: 1.0
34
- - name: SENTER F Score
35
- type: f_score
36
- value: 1.0
37
  ---
38
- Healthsea pipeline for analyzing reviews to supplement products
 
 
 
 
39
 
40
  | Feature | Description |
41
  | --- | --- |
42
  | **Name** | `en_healthsea` |
43
- | **Version** | `0.0.1` |
44
  | **spaCy** | `>=3.2.0,<3.3.0` |
45
  | **Default Pipeline** | `sentencizer`, `tok2vec`, `ner`, `benepar`, `segmentation`, `clausecat`, `aggregation` |
46
  | **Components** | `sentencizer`, `tok2vec`, `ner`, `benepar`, `segmentation`, `clausecat`, `aggregation` |
47
  | **Vectors** | 684830 keys, 684830 unique vectors (300 dimensions) |
48
  | **Sources** | n/a |
49
- | **License** | `MIT` |
50
  | **Author** | [Explosion](explosion.ai) |
51
 
52
  ### Label Scheme
@@ -66,20 +57,15 @@ Healthsea pipeline for analyzing reviews to supplement products
66
 
67
  | Type | Score |
68
  | --- | --- |
69
- | `SENTS_F` | 100.00 |
70
- | `SENTS_P` | 100.00 |
71
- | `SENTS_R` | 100.00 |
72
- | `ENTS_F` | 0.00 |
73
- | `ENTS_P` | 0.00 |
74
- | `ENTS_R` | 0.00 |
75
- | `ENTS_PER_TYPE` | 0.00 |
76
  | `CATS_SCORE` | 74.87 |
77
- | `CATS_MICRO_P` | 82.39 |
78
- | `CATS_MICRO_R` | 80.93 |
79
- | `CATS_MICRO_F` | 81.66 |
80
- | `CATS_MACRO_P` | 78.43 |
81
- | `CATS_MACRO_R` | 72.16 |
82
  | `CATS_MACRO_F` | 74.87 |
83
- | `CATS_MACRO_AUC` | 92.78 |
84
- | `CATS_MACRO_AUC_PER_TYPE` | 0.00 |
85
- | `CLAUSECAT_LOSS` | 339.11 |
 
2
  tags:
3
  - spacy
4
  - token-classification
5
+ - text-classification
6
  language:
7
  - en
 
8
  model-index:
9
  - name: en_healthsea
10
  results:
 
14
  metrics:
15
  - name: NER Precision
16
  type: precision
17
+ value: 80.77
18
  - name: NER Recall
19
  type: recall
20
+ value: 79.92
21
  - name: NER F Score
22
  type: f_score
23
+ value: 80.34
 
 
 
 
 
 
 
 
 
 
 
 
 
24
  ---
25
+
26
+ # Welcome to Healthsea ✨
27
+ Create better access to health with machine learning and natural language processing. This is the trained healthsea pipeline for analyzing user reviews to supplements by extracting their effects on health. This pipeline features a trained NER model and a custom Text Classification model with Clause Segmentation and Blinding capabilities.
28
+
29
+ > In our [blog post](explosion.ai) you can read more about the architecture of healthsea and you can also visit the [healthsea repository](https://github.com/thomashacker/healthsea) for all the training workflows, custom components and training data.
30
 
31
  | Feature | Description |
32
  | --- | --- |
33
  | **Name** | `en_healthsea` |
34
+ | **Version** | `0.0.0` |
35
  | **spaCy** | `>=3.2.0,<3.3.0` |
36
  | **Default Pipeline** | `sentencizer`, `tok2vec`, `ner`, `benepar`, `segmentation`, `clausecat`, `aggregation` |
37
  | **Components** | `sentencizer`, `tok2vec`, `ner`, `benepar`, `segmentation`, `clausecat`, `aggregation` |
38
  | **Vectors** | 684830 keys, 684830 unique vectors (300 dimensions) |
39
  | **Sources** | n/a |
40
+ | **License** | MIT |
41
  | **Author** | [Explosion](explosion.ai) |
42
 
43
  ### Label Scheme
 
57
 
58
  | Type | Score |
59
  | --- | --- |
60
+ | `ENTS_F` | 80.34 |
61
+ | `ENTS_P` | 80.77 |
62
+ | `ENTS_R` | 79.92 |
 
 
 
 
63
  | `CATS_SCORE` | 74.87 |
64
+ | `CATS_MICRO_P` | 82.17 |
65
+ | `CATS_MICRO_R` | 80.85 |
66
+ | `CATS_MICRO_F` | 81.51 |
67
+ | `CATS_MACRO_P` | 78.01 |
68
+ | `CATS_MACRO_R` | 72.41 |
69
  | `CATS_MACRO_F` | 74.87 |
70
+ | `CATS_MACRO_AUC` | 92.76 |
71
+ | `CATS_LOSS` | 297.22 |