Eyüp İpler commited on
Commit
161bb86
·
verified ·
1 Parent(s): 4dc9cf0

bai-2 Versions

Browse files
.gitattributes CHANGED
@@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ Main[[:space:]]Models/bai-2.0/bai-2.0.keras filter=lfs diff=lfs merge=lfs -text
37
+ Main[[:space:]]Models/bai-2.1/bai-2.1.keras filter=lfs diff=lfs merge=lfs -text
38
+ Main[[:space:]]Models/bai-2.2/bai-2.2.keras filter=lfs diff=lfs merge=lfs -text
Main Models/bai-2.0/README.md ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # bai-2.0 (338787 parametre)
2
+
3
+ ## EEG üzerinden duygu sınıflandırması yapan ilk kararlı modellerimizden olan "bai-2.0" modeli.
4
+
5
+ #### NOT: Gerçek zamanlı EEG veri takibi uygulamasına modeli entegre ederseniz, gerçek zamanlı olarak duygu tahmini yapabilmektedir. Uygulamaya erişebilmek için: https://github.com/neurazum/Realtime-EEG-Monitoring
6
+
7
+ ## -----------------------------------------------------------------------------------
8
+
9
+ # bai-2.0 (338787 parameters)
10
+
11
+ ## "bai-2.0" model, one of the first stable models that classifies emotions via EEG.
12
+
13
+ #### NOTE: If you integrate the model into a real-time EEG data tracking application, it can predict emotions in real time. To access the application: https://github.com/neurazum/Realtime-EEG-Monitoring
14
+
15
+ **Doğruluk/Accuracy: %97.93621013133207**
16
+
17
+ ## -----------------------------------------------------------------------------------
18
+
19
+ # Kullanım / Usage:
20
+
21
+ ```python
22
+ import numpy as np
23
+ import pandas as pd
24
+ from sklearn.preprocessing import StandardScaler
25
+ from tensorflow.keras.models import load_model
26
+ import matplotlib.pyplot as plt
27
+
28
+ model_path = 'model-path'
29
+
30
+ model = load_model(model_path)
31
+
32
+ model_name = model_path.split('/')[-1].split('.')[0]
33
+
34
+ plt.figure(figsize=(10, 6))
35
+ plt.title(f'Duygu Tahmini ({model_name}.0)')
36
+ plt.xlabel('Zaman')
37
+ plt.ylabel('Sınıf')
38
+ plt.legend(loc='upper right')
39
+ plt.grid(True)
40
+ plt.show()
41
+ model.summary()
42
+
43
+ ```
Main Models/bai-2.0/bai-2.0.keras ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:29e3d5b1d22c913b9456494f8e03d5d8d1fdf263d0276998a4bea3d14582805b
3
+ size 4102623
Main Models/bai-2.1/README.md ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # bai-2.1 (338787 parametre)
2
+
3
+ ## EEG üzerinden duygu sınıflandırması yapan "bai-2.1" modeli, bir önceki model olan "bai-2.0" modeline göre overfitting ihtimali azaltılmış ve optimize edilmiş versiyonudur. Tüm işlevleri aynıdır.
4
+
5
+ #### NOT: Gerçek zamanlı EEG veri takibi uygulamasına modeli entegre ederseniz, gerçek zamanlı olarak duygu tahmini yapabilmektedir. Uygulamaya erişebilmek için: https://github.com/neurazum/Realtime-EEG-Monitoring
6
+
7
+ ## -----------------------------------------------------------------------------------
8
+
9
+ # bai-2.1 (338787 parameters)
10
+
11
+ ## The "bai-2.1" model, which performs emotion classification over EEG, is an optimised version of the previous model "bai-2.0" with reduced overfitting probability. All functions are the same.
12
+
13
+ #### NOTE: If you integrate the model into a real-time EEG data tracking application, it can predict emotions in real time. To access the application: https://github.com/neurazum/Realtime-EEG-Monitoring
14
+
15
+ **Doğruluk/Accuracy: %97.93621013133207**
16
+
17
+ ## -----------------------------------------------------------------------------------
18
+
19
+ # Kullanım / Usage:
20
+
21
+ ```python
22
+ import numpy as np
23
+ import pandas as pd
24
+ from sklearn.preprocessing import StandardScaler
25
+ from tensorflow.keras.models import load_model
26
+ import matplotlib.pyplot as plt
27
+
28
+ model_path = 'model-path'
29
+
30
+ model = load_model(model_path)
31
+
32
+ model_name = model_path.split('/')[-1].split('.')[0]
33
+
34
+ plt.figure(figsize=(10, 6))
35
+ plt.title(f'Duygu Tahmini ({model_name}.1)')
36
+ plt.xlabel('Zaman')
37
+ plt.ylabel('Sınıf')
38
+ plt.legend(loc='upper right')
39
+ plt.grid(True)
40
+ plt.show()
41
+ model.summary()
42
+
43
+ ```
Main Models/bai-2.1/bai-2.1.keras ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:45802a2ab5115e4e866e6b11bda2161f0b0da6cf107ce607369950c92808c32d
3
+ size 4102623
Main Models/bai-2.2/README.md ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # bai-2.2 (338787 parametre)
2
+
3
+ ## bai-2.0 ve 2.1 sürümlerinin daha hızlı ve optimize edilmiş versiyonudur. Tüm işlevleri aynıdır.
4
+
5
+ #### NOT: Gerçek zamanlı EEG veri takibi uygulamasına modeli entegre ederseniz, gerçek zamanlı olarak duygu tahmini yapabilmektedir. Uygulamaya erişebilmek için: https://github.com/neurazum/Realtime-EEG-Monitoring
6
+
7
+ ## -----------------------------------------------------------------------------------
8
+
9
+ # bai-2.2 (338787 parameters)
10
+
11
+ ## It is a faster and optimized version of bai-2.0 and 2.1. All functions are the same.
12
+
13
+ #### NOTE: If you integrate the model into a real-time EEG data tracking application, it can predict emotions in real time. To access the application: https://github.com/neurazum/Realtime-EEG-Monitoring
14
+
15
+
16
+ **Doğruluk/Accuracy: %94,8874296435272**
17
+
18
+ # Kullanım / Usage
19
+
20
+ ```python
21
+ import numpy as np
22
+ import pandas as pd
23
+ from sklearn.preprocessing import StandardScaler
24
+ from tensorflow.keras.models import load_model
25
+ import matplotlib.pyplot as plt
26
+
27
+ model_path = 'model-path'
28
+
29
+ model = load_model(model_path)
30
+
31
+ model_name = model_path.split('/')[-1].split('.')[0]
32
+
33
+ plt.figure(figsize=(10, 6))
34
+ plt.title(f'Duygu Tahmini ({model_name}.1)')
35
+ plt.xlabel('Zaman')
36
+ plt.ylabel('Sınıf')
37
+ plt.legend(loc='upper right')
38
+ plt.grid(True)
39
+ plt.show()
40
+ model.summary()
41
+ ```
42
+
43
+ # Tahmin / Prediction
44
+
45
+ ```python
46
+ import numpy as np
47
+ import pandas as pd
48
+ from sklearn.preprocessing import StandardScaler
49
+ from tensorflow.keras.models import load_model
50
+
51
+ model_path = 'model-path'
52
+
53
+ model = load_model(model_path)
54
+
55
+ scaler = StandardScaler()
56
+
57
+ predictions = model.predict(X_new_reshaped)
58
+ predicted_labels = np.argmax(predictions, axis=1)
59
+
60
+ label_mapping = {'NEGATIVE': 0, 'NEUTRAL': 1, 'POSITIVE': 2}
61
+ label_mapping_reverse = {v: k for k, v in label_mapping.items()}
62
+
63
+ #new_input = np.array([[23, 465, 12, 9653] * 637])
64
+ new_input = np.random.rand(1, 2548) # 1 örnek ve 2548 özellik
65
+ new_input_scaled = scaler.fit_transform(new_input)
66
+ new_input_reshaped = new_input_scaled.reshape((new_input_scaled.shape[0], 1, new_input_scaled.shape[1]))
67
+
68
+ new_prediction = model.predict(new_input_reshaped)
69
+ predicted_label = np.argmax(new_prediction, axis=1)[0]
70
+ predicted_emotion = label_mapping_reverse[predicted_label]
71
+
72
+ if predicted_emotion == 'NEGATIVE':
73
+ predicted_emotion = 'Negatif'
74
+ elif predicted_emotion == 'NEUTRAL':
75
+ predicted_emotion = 'Nötr'
76
+ elif predicted_emotion == 'POSITIVE':
77
+ predicted_emotion = 'Pozitif'
78
+
79
+ print(f'Giriş Verileri: {new_input}')
80
+ print(f'Tahmin Edilen Duygu: {predicted_emotion}')
81
+ ```
Main Models/bai-2.2/bai-2.2.keras ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:72ab4b95522f7d9b9354617f8bf996ab9ae2af28d777233b89cc1543dc1fe88f
3
+ size 2051948