eyupipler commited on
Commit
2969a31
1 Parent(s): b49a3d8

Update Main Models/bai-3.0 Epilepsy/README.md

Browse files
Main Models/bai-3.0 Epilepsy/README.md CHANGED
@@ -1,72 +1,72 @@
1
- # bai-3.0 Epilepsy (45851parametre)
2
-
3
- ## "bai-3.0 Epilepsy" modeli, hastanın epilepsi nöbeti durumunu tespit eder.
4
-
5
- #### NOT: Gerçek zamanlı EEG veri takibi uygulamasına modeli entegre ederseniz, gerçek zamanlı olarak duygu tahmini yapabilmektedir. Uygulamaya erişebilmek için: https://github.com/neurazum/Realtime-EEG-Monitoring
6
-
7
- ## -----------------------------------------------------------------------------------
8
-
9
- # bai-3.0 Epilepsy (45851 parameters)
10
-
11
- ## The "bai-3.0 Epilepsy" model detects the patient's epileptic seizure status.
12
-
13
- #### NOTE: If you integrate the model into a real-time EEG data tracking application, it can predict emotions in real time. To access the application: https://github.com/neurazum/Realtime-EEG-Monitoring
14
- **Doğruluk/Accuracy: %68,90829694323143**
15
-
16
- # Kullanım / Usage
17
-
18
- ```python
19
- import pandas as pd
20
- import numpy as np
21
- import ast
22
- from tensorflow.keras.models import load_model, Sequential
23
- from sklearn.metrics import accuracy_score
24
-
25
- model_path = 'model/path'
26
-
27
- model = load_model(model_path)
28
-
29
- test_data_path = 'epilepsy/dataset'
30
- test_data = pd.read_csv(test_data_path)
31
-
32
- test_data['sample'] = test_data['sample'].apply(ast.literal_eval)
33
-
34
- X_test = np.array(test_data['sample'].tolist())
35
- y_test = test_data['label'].values.astype(int)
36
-
37
- timesteps = 10
38
-
39
- X_test_reshaped = []
40
-
41
- for i in range(len(X_test) - timesteps):
42
- X_test_reshaped.append(X_test[i:i + timesteps])
43
-
44
- X_test_reshaped = np.array(X_test_reshaped)
45
-
46
- y_pred = model.predict(X_test_reshaped)
47
- y_pred_classes = (y_pred > 0.77).astype(int) # En kararlı sonuçlar -> 0.78 ve 0.77. Eşik değeri: çıkan sonucun yuvarlama değerini artırıp azaltma.
48
- # Örn. Olasılık < 0.77 ise "0", olasılık >= 0.77 ise "1" tahminini yap.
49
-
50
- accuracy = accuracy_score(y_test[timesteps:], y_pred_classes)
51
-
52
- print("Gerçek Değerler (1: Nöbet, 0: Nöbet Değil) ve Tahminler:")
53
- for i in range(len(y_pred_classes)):
54
- print(f"Gerçek: {y_test[i + timesteps]}, Tahmin: {y_pred_classes[i][0]}")
55
- print(f"Modelin doğruluk oranı: %{accuracy * 100}")
56
- model.summary()
57
- ```
58
-
59
- # Python Sürümü / Python Version
60
-
61
- ### 3.9 <=> 3.13
62
-
63
- # Modüller / Modules
64
-
65
- ```bash
66
- matplotlib==3.8.0
67
- matplotlib-inline==0.1.6
68
- numpy==1.26.4
69
- pandas==2.2.2
70
- scikit-learn==1.3.1
71
- tensorflow==2.15.0
72
  ```
 
1
+ # bai-3.0 Epilepsy (45851parametre)
2
+
3
+ ## "bai-3.0 Epilepsy" modeli, hastanın epilepsi nöbeti durumunu tespit eder.
4
+
5
+ #### NOT: Gerçek zamanlı EEG veri takibi uygulamasına modeli entegre ederseniz, gerçek zamanlı olarak nöbet durumu tahmini yapabilmektedir. Uygulamaya erişebilmek için: https://github.com/neurazum/Realtime-EEG-Monitoring
6
+
7
+ ## -----------------------------------------------------------------------------------
8
+
9
+ # bai-3.0 Epilepsy (45851 parameters)
10
+
11
+ ## The "bai-3.0 Epilepsy" model detects the patient's epileptic seizure status.
12
+
13
+ #### NOTE: If you integrate the model into a real-time EEG data tracking application, it can predict epilepsy seizure state in real time. To access the application: https://github.com/neurazum/Realtime-EEG-Monitoring
14
+ **Doğruluk/Accuracy: %68,90829694323143**
15
+
16
+ # Kullanım / Usage
17
+
18
+ ```python
19
+ import pandas as pd
20
+ import numpy as np
21
+ import ast
22
+ from tensorflow.keras.models import load_model, Sequential
23
+ from sklearn.metrics import accuracy_score
24
+
25
+ model_path = 'model/path'
26
+
27
+ model = load_model(model_path)
28
+
29
+ test_data_path = 'epilepsy/dataset'
30
+ test_data = pd.read_csv(test_data_path)
31
+
32
+ test_data['sample'] = test_data['sample'].apply(ast.literal_eval)
33
+
34
+ X_test = np.array(test_data['sample'].tolist())
35
+ y_test = test_data['label'].values.astype(int)
36
+
37
+ timesteps = 10
38
+
39
+ X_test_reshaped = []
40
+
41
+ for i in range(len(X_test) - timesteps):
42
+ X_test_reshaped.append(X_test[i:i + timesteps])
43
+
44
+ X_test_reshaped = np.array(X_test_reshaped)
45
+
46
+ y_pred = model.predict(X_test_reshaped)
47
+ y_pred_classes = (y_pred > 0.77).astype(int) # En kararlı sonuçlar -> 0.78 ve 0.77. Eşik değeri: çıkan sonucun yuvarlama değerini artırıp azaltma.
48
+ # Örn. Olasılık < 0.77 ise "0", olasılık >= 0.77 ise "1" tahminini yap.
49
+
50
+ accuracy = accuracy_score(y_test[timesteps:], y_pred_classes)
51
+
52
+ print("Gerçek Değerler (1: Nöbet, 0: Nöbet Değil) ve Tahminler:")
53
+ for i in range(len(y_pred_classes)):
54
+ print(f"Gerçek: {y_test[i + timesteps]}, Tahmin: {y_pred_classes[i][0]}")
55
+ print(f"Modelin doğruluk oranı: %{accuracy * 100}")
56
+ model.summary()
57
+ ```
58
+
59
+ # Python Sürümü / Python Version
60
+
61
+ ### 3.9 <=> 3.13
62
+
63
+ # Modüller / Modules
64
+
65
+ ```bash
66
+ matplotlib==3.8.0
67
+ matplotlib-inline==0.1.6
68
+ numpy==1.26.4
69
+ pandas==2.2.2
70
+ scikit-learn==1.3.1
71
+ tensorflow==2.15.0
72
  ```