Eyüp İpler commited on
Commit
589f8dc
1 Parent(s): 18a1462

Update Main Models/bai-2.2/README.md

Browse files
Files changed (1) hide show
  1. Main Models/bai-2.2/README.md +80 -80
Main Models/bai-2.2/README.md CHANGED
@@ -1,81 +1,81 @@
1
- # bai-2.2 (338787 parametre)
2
-
3
- ## bai-2.0 ve 2.1 sürümlerinin daha hızlı ve optimize edilmiş versiyonudur. Tüm işlevleri aynıdır.
4
-
5
- #### NOT: Gerçek zamanlı EEG veri takibi uygulamasına modeli entegre ederseniz, gerçek zamanlı olarak duygu tahmini yapabilmektedir. Uygulamaya erişebilmek için: https://github.com/neurazum/Realtime-EEG-Monitoring
6
-
7
- ## -----------------------------------------------------------------------------------
8
-
9
- # bai-2.2 (338787 parameters)
10
-
11
- ## It is a faster and optimized version of bai-2.0 and 2.1. All functions are the same.
12
-
13
- #### NOTE: If you integrate the model into a real-time EEG data tracking application, it can predict emotions in real time. To access the application: https://github.com/neurazum/Realtime-EEG-Monitoring
14
-
15
-
16
- **Doğruluk/Accuracy: %94,8874296435272**
17
-
18
- # Kullanım / Usage
19
-
20
- ```python
21
- import numpy as np
22
- import pandas as pd
23
- from sklearn.preprocessing import StandardScaler
24
- from tensorflow.keras.models import load_model
25
- import matplotlib.pyplot as plt
26
-
27
- model_path = 'model-path'
28
-
29
- model = load_model(model_path)
30
-
31
- model_name = model_path.split('/')[-1].split('.')[0]
32
-
33
- plt.figure(figsize=(10, 6))
34
- plt.title(f'Duygu Tahmini ({model_name}.1)')
35
- plt.xlabel('Zaman')
36
- plt.ylabel('Sınıf')
37
- plt.legend(loc='upper right')
38
- plt.grid(True)
39
- plt.show()
40
- model.summary()
41
- ```
42
-
43
- # Tahmin / Prediction
44
-
45
- ```python
46
- import numpy as np
47
- import pandas as pd
48
- from sklearn.preprocessing import StandardScaler
49
- from tensorflow.keras.models import load_model
50
-
51
- model_path = 'model-path'
52
-
53
- model = load_model(model_path)
54
-
55
- scaler = StandardScaler()
56
-
57
- predictions = model.predict(X_new_reshaped)
58
- predicted_labels = np.argmax(predictions, axis=1)
59
-
60
- label_mapping = {'NEGATIVE': 0, 'NEUTRAL': 1, 'POSITIVE': 2}
61
- label_mapping_reverse = {v: k for k, v in label_mapping.items()}
62
-
63
- #new_input = np.array([[23, 465, 12, 9653] * 637])
64
- new_input = np.random.rand(1, 2548) # 1 örnek ve 2548 özellik
65
- new_input_scaled = scaler.fit_transform(new_input)
66
- new_input_reshaped = new_input_scaled.reshape((new_input_scaled.shape[0], 1, new_input_scaled.shape[1]))
67
-
68
- new_prediction = model.predict(new_input_reshaped)
69
- predicted_label = np.argmax(new_prediction, axis=1)[0]
70
- predicted_emotion = label_mapping_reverse[predicted_label]
71
-
72
- if predicted_emotion == 'NEGATIVE':
73
- predicted_emotion = 'Negatif'
74
- elif predicted_emotion == 'NEUTRAL':
75
- predicted_emotion = 'Nötr'
76
- elif predicted_emotion == 'POSITIVE':
77
- predicted_emotion = 'Pozitif'
78
-
79
- print(f'Giriş Verileri: {new_input}')
80
- print(f'Tahmin Edilen Duygu: {predicted_emotion}')
81
  ```
 
1
+ # bai-2.2 (164790 parametre)
2
+
3
+ ## bai-2.0 ve 2.1 sürümlerinin daha hızlı ve optimize edilmiş versiyonudur. Tüm işlevleri aynıdır.
4
+
5
+ #### NOT: Gerçek zamanlı EEG veri takibi uygulamasına modeli entegre ederseniz, gerçek zamanlı olarak duygu tahmini yapabilmektedir. Uygulamaya erişebilmek için: https://github.com/neurazum/Realtime-EEG-Monitoring
6
+
7
+ ## -----------------------------------------------------------------------------------
8
+
9
+ # bai-2.2 (164790 parameters)
10
+
11
+ ## It is a faster and optimized version of bai-2.0 and 2.1. All functions are the same.
12
+
13
+ #### NOTE: If you integrate the model into a real-time EEG data tracking application, it can predict emotions in real time. To access the application: https://github.com/neurazum/Realtime-EEG-Monitoring
14
+
15
+
16
+ **Doğruluk/Accuracy: %94,8874296435272**
17
+
18
+ # Kullanım / Usage
19
+
20
+ ```python
21
+ import numpy as np
22
+ import pandas as pd
23
+ from sklearn.preprocessing import StandardScaler
24
+ from tensorflow.keras.models import load_model
25
+ import matplotlib.pyplot as plt
26
+
27
+ model_path = 'model-path'
28
+
29
+ model = load_model(model_path)
30
+
31
+ model_name = model_path.split('/')[-1].split('.')[0]
32
+
33
+ plt.figure(figsize=(10, 6))
34
+ plt.title(f'Duygu Tahmini ({model_name}.1)')
35
+ plt.xlabel('Zaman')
36
+ plt.ylabel('Sınıf')
37
+ plt.legend(loc='upper right')
38
+ plt.grid(True)
39
+ plt.show()
40
+ model.summary()
41
+ ```
42
+
43
+ # Tahmin / Prediction
44
+
45
+ ```python
46
+ import numpy as np
47
+ import pandas as pd
48
+ from sklearn.preprocessing import StandardScaler
49
+ from tensorflow.keras.models import load_model
50
+
51
+ model_path = 'model-path'
52
+
53
+ model = load_model(model_path)
54
+
55
+ scaler = StandardScaler()
56
+
57
+ predictions = model.predict(X_new_reshaped)
58
+ predicted_labels = np.argmax(predictions, axis=1)
59
+
60
+ label_mapping = {'NEGATIVE': 0, 'NEUTRAL': 1, 'POSITIVE': 2}
61
+ label_mapping_reverse = {v: k for k, v in label_mapping.items()}
62
+
63
+ #new_input = np.array([[23, 465, 12, 9653] * 637])
64
+ new_input = np.random.rand(1, 2548) # 1 örnek ve 2548 özellik
65
+ new_input_scaled = scaler.fit_transform(new_input)
66
+ new_input_reshaped = new_input_scaled.reshape((new_input_scaled.shape[0], 1, new_input_scaled.shape[1]))
67
+
68
+ new_prediction = model.predict(new_input_reshaped)
69
+ predicted_label = np.argmax(new_prediction, axis=1)[0]
70
+ predicted_emotion = label_mapping_reverse[predicted_label]
71
+
72
+ if predicted_emotion == 'NEGATIVE':
73
+ predicted_emotion = 'Negatif'
74
+ elif predicted_emotion == 'NEUTRAL':
75
+ predicted_emotion = 'Nötr'
76
+ elif predicted_emotion == 'POSITIVE':
77
+ predicted_emotion = 'Pozitif'
78
+
79
+ print(f'Giriş Verileri: {new_input}')
80
+ print(f'Tahmin Edilen Duygu: {predicted_emotion}')
81
  ```