Eyüp İpler commited on
Commit
a4d3600
1 Parent(s): d08596f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +215 -78
README.md CHANGED
@@ -40,161 +40,298 @@ tags:
40
 
41
  ### Direct Use
42
 
43
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
44
 
45
- [More Information Needed]
 
 
 
 
 
46
 
47
- ### Downstream Use [optional]
48
 
49
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
50
 
51
- [More Information Needed]
52
 
53
- ### Out-of-Scope Use
 
 
 
 
 
 
 
 
54
 
55
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
56
 
57
- [More Information Needed]
 
 
 
 
58
 
59
- ## Bias, Risks, and Limitations
60
 
61
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
62
 
63
- [More Information Needed]
64
 
65
- ### Recommendations
 
66
 
67
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
 
68
 
69
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
 
 
 
70
 
71
- ## How to Get Started with the Model
 
 
72
 
73
- Use the code below to get started with the model.
 
 
 
 
 
 
74
 
75
- [More Information Needed]
 
 
76
 
77
- ## Training Details
78
 
79
- ### Training Data
 
 
 
 
 
 
 
 
 
 
80
 
81
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
82
 
83
- [More Information Needed]
 
 
 
84
 
85
- ### Training Procedure
86
 
87
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
 
 
 
 
88
 
89
- #### Preprocessing [optional]
90
 
91
- [More Information Needed]
 
 
92
 
 
93
 
94
- #### Training Hyperparameters
 
 
95
 
96
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
 
 
97
 
98
- #### Speeds, Sizes, Times [optional]
 
99
 
100
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
101
 
102
- [More Information Needed]
 
 
103
 
104
- ## Evaluation
105
 
106
- <!-- This section describes the evaluation protocols and provides the results. -->
 
107
 
108
- ### Testing Data, Factors & Metrics
 
 
109
 
110
- #### Testing Data
 
 
 
 
 
 
111
 
112
- <!-- This should link to a Dataset Card if possible. -->
 
 
 
113
 
114
- [More Information Needed]
 
115
 
116
- #### Factors
 
117
 
118
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
 
 
 
 
119
 
120
- [More Information Needed]
 
 
 
121
 
122
- #### Metrics
 
123
 
124
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
125
 
126
- [More Information Needed]
 
 
 
 
 
127
 
128
- ### Results
129
 
130
- [More Information Needed]
 
 
 
 
 
131
 
132
- #### Summary
133
 
 
 
 
 
 
134
 
 
 
135
 
136
- ## Model Examination [optional]
137
 
138
- <!-- Relevant interpretability work for the model goes here -->
139
 
140
- [More Information Needed]
 
141
 
142
- ## Environmental Impact
 
 
143
 
144
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
 
145
 
146
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
 
 
147
 
148
- - **Hardware Type:** [More Information Needed]
149
- - **Hours used:** [More Information Needed]
150
- - **Cloud Provider:** [More Information Needed]
151
- - **Compute Region:** [More Information Needed]
152
- - **Carbon Emitted:** [More Information Needed]
153
 
154
- ## Technical Specifications [optional]
 
 
155
 
156
- ### Model Architecture and Objective
 
 
157
 
158
- [More Information Needed]
159
 
160
- ### Compute Infrastructure
 
 
 
 
 
 
161
 
162
- [More Information Needed]
 
 
 
163
 
164
- #### Hardware
165
 
166
- [More Information Needed]
167
 
168
- #### Software
 
 
169
 
170
- [More Information Needed]
171
 
172
- ## Citation [optional]
 
 
173
 
174
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
175
 
176
- **BibTeX:**
177
 
178
- [More Information Needed]
 
 
 
 
179
 
180
- **APA:**
181
 
182
- [More Information Needed]
 
 
183
 
184
- ## Glossary [optional]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
185
 
186
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
187
 
188
- [More Information Needed]
189
 
190
- ## More Information [optional]
191
 
192
- [More Information Needed]
193
 
194
  ## Model Card Authors [optional]
195
 
196
- [More Information Needed]
197
 
198
  ## Model Card Contact
199
 
200
- [More Information Needed]
 
40
 
41
  ### Direct Use
42
 
43
+ **Classical Use:**
44
 
45
+ ```python
46
+ import numpy as np
47
+ import pandas as pd
48
+ from sklearn.preprocessing import StandardScaler
49
+ from tensorflow.keras.models import load_model
50
+ import matplotlib.pyplot as plt
51
 
52
+ model_path = 'model-path'
53
 
54
+ model = load_model(model_path)
55
 
56
+ model_name = model_path.split('/')[-1].split('.')[0]
57
 
58
+ plt.figure(figsize=(10, 6))
59
+ plt.title(f'Duygu Tahmini ({model_name})')
60
+ plt.xlabel('Zaman')
61
+ plt.ylabel('Sınıf')
62
+ plt.legend(loc='upper right')
63
+ plt.grid(True)
64
+ plt.show()
65
+ model.summary()
66
+ ```
67
 
68
+ **Prediction Test:**
69
 
70
+ ```python
71
+ import numpy as np
72
+ import pandas as pd
73
+ from sklearn.preprocessing import StandardScaler
74
+ from tensorflow.keras.models import load_model
75
 
76
+ model_path = 'model-path'
77
 
78
+ model = load_model(model_path)
79
 
80
+ scaler = StandardScaler()
81
 
82
+ predictions = model.predict(X_new_reshaped)
83
+ predicted_labels = np.argmax(predictions, axis=1)
84
 
85
+ label_mapping = {'NEGATIVE': 0, 'NEUTRAL': 1, 'POSITIVE': 2}
86
+ label_mapping_reverse = {v: k for k, v in label_mapping.items()}
87
 
88
+ #new_input = np.array([[23, 465, 12, 9653] * 637])
89
+ new_input = np.random.rand(1, 2548) # 1 sample and 2548 features
90
+ new_input_scaled = scaler.fit_transform(new_input)
91
+ new_input_reshaped = new_input_scaled.reshape((new_input_scaled.shape[0], 1, new_input_scaled.shape[1]))
92
 
93
+ new_prediction = model.predict(new_input_reshaped)
94
+ predicted_label = np.argmax(new_prediction, axis=1)[0]
95
+ predicted_emotion = label_mapping_reverse[predicted_label]
96
 
97
+ # TR Lang
98
+ if predicted_emotion == 'NEGATIVE':
99
+ predicted_emotion = 'Negatif'
100
+ elif predicted_emotion == 'NEUTRAL':
101
+ predicted_emotion = 'Nötr'
102
+ elif predicted_emotion == 'POSITIVE':
103
+ predicted_emotion = 'Pozitif'
104
 
105
+ print(f'Input Data: {new_input}')
106
+ print(f'Predicted Emotion: {predicted_emotion}')
107
+ ```
108
 
109
+ **Realtime Use (EEG Monitoring without AI Model):**
110
 
111
+ ```python
112
+ import sys
113
+ import pyaudio
114
+ import numpy as np
115
+ import matplotlib.pyplot as plt
116
+ from matplotlib.lines import Line2D
117
+ from PyQt5.QtWidgets import QApplication, QMainWindow, QPushButton, QVBoxLayout, QWidget
118
+ from PyQt5.QtCore import QTimer
119
+ from PyQt5.QtGui import QIcon
120
+ from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas
121
+ from matplotlib.backends.backend_qt5agg import NavigationToolbar2QT as NavigationToolbar
122
 
 
123
 
124
+ CHUNK = 1000 # Chunk size
125
+ FORMAT = pyaudio.paInt16 # Data type (16-bit PCM)
126
+ CHANNELS = 1 # (Mono)
127
+ RATE = 2000 # Sample rate (Hz)
128
 
129
+ p = pyaudio.PyAudio()
130
 
131
+ stream = p.open(format=FORMAT,
132
+ channels=CHANNELS,
133
+ rate=RATE,
134
+ input=True,
135
+ frames_per_buffer=CHUNK)
136
 
 
137
 
138
+ class MainWindow(QMainWindow):
139
+ def __init__(self):
140
+ super().__init__()
141
 
142
+ self.initUI()
143
 
144
+ self.timer = QTimer()
145
+ self.timer.timeout.connect(self.update_plot)
146
+ self.timer.start(1)
147
 
148
+ def initUI(self):
149
+ self.setWindowTitle('EEG Monitoring by Neurazum')
150
+ self.setWindowIcon(QIcon('/neurazumicon.ico'))
151
 
152
+ self.central_widget = QWidget()
153
+ self.setCentralWidget(self.central_widget)
154
 
155
+ self.layout = QVBoxLayout(self.central_widget)
156
 
157
+ self.fig, (self.ax1, self.ax2) = plt.subplots(2, 1, figsize=(12, 8), gridspec_kw={'height_ratios': [9, 1]})
158
+ self.fig.tight_layout()
159
+ self.canvas = FigureCanvas(self.fig)
160
 
161
+ self.layout.addWidget(self.canvas)
162
 
163
+ self.toolbar = NavigationToolbar(self.canvas, self)
164
+ self.layout.addWidget(self.toolbar)
165
 
166
+ self.x = np.arange(0, 2 * CHUNK, 2)
167
+ self.line1, = self.ax1.plot(self.x, np.random.rand(CHUNK))
168
+ self.line2, = self.ax2.plot(self.x, np.random.rand(CHUNK))
169
 
170
+ self.legend_elements = [
171
+ Line2D([0, 4], [0], color='yellow', lw=4, label='DELTA (0hz-4hz)'),
172
+ Line2D([4, 7], [0], color='blue', lw=4, label='THETA (4hz-7hz)'),
173
+ Line2D([8, 12], [0], color='green', lw=4, label='ALPHA (8hz-12hz)'),
174
+ Line2D([12, 30], [0], color='red', lw=4, label='BETA (12hz-30hz)'),
175
+ Line2D([30, 100], [0], color='purple', lw=4, label='GAMMA (30hz-100hz)')
176
+ ]
177
 
178
+ def update_plot(self):
179
+ data = np.frombuffer(stream.read(CHUNK), dtype=np.int16)
180
+ data = np.abs(data)
181
+ voltage_data = data * (3.3 / 1024) # Voltage to "mV"
182
 
183
+ self.line1.set_ydata(data)
184
+ self.line2.set_ydata(voltage_data)
185
 
186
+ for coll in self.ax1.collections:
187
+ coll.remove()
188
 
189
+ self.ax1.fill_between(self.x, data, where=((self.x >= 0) & (self.x <= 4)), color='yellow', alpha=1)
190
+ self.ax1.fill_between(self.x, data, where=((self.x >= 4) & (self.x <= 7)), color='blue', alpha=1)
191
+ self.ax1.fill_between(self.x, data, where=((self.x >= 8) & (self.x <= 12)), color='green', alpha=1)
192
+ self.ax1.fill_between(self.x, data, where=((self.x >= 12) & (self.x <= 30)), color='red', alpha=1)
193
+ self.ax1.fill_between(self.x, data, where=((self.x >= 30) & (self.x <= 100)), color='purple', alpha=1)
194
 
195
+ self.ax1.legend(handles=self.legend_elements, loc='upper right')
196
+ self.ax1.set_ylabel('Value (dB)')
197
+ self.ax1.set_xlabel('Frequency (Hz)')
198
+ self.ax1.set_title('Frequency and mV')
199
 
200
+ self.ax2.set_ylabel('Voltage (mV)')
201
+ self.ax2.set_xlabel('Time')
202
 
203
+ self.canvas.draw()
204
 
205
+ def close_application(self):
206
+ self.timer.stop()
207
+ stream.stop_stream()
208
+ stream.close()
209
+ p.terminate()
210
+ sys.exit(app.exec_())
211
 
 
212
 
213
+ if __name__ == '__main__':
214
+ app = QApplication(sys.argv)
215
+ mainWin = MainWindow()
216
+ mainWin.show()
217
+ sys.exit(app.exec_())
218
+ ```
219
 
220
+ **Emotion Dataset Prediction Use:**
221
 
222
+ ```python
223
+ import numpy as np
224
+ import pandas as pd
225
+ from sklearn.preprocessing import StandardScaler
226
+ from tensorflow.keras.models import load_model
227
 
228
+ model_path = 'model-path'
229
+ new_data_path = 'dataset-path'
230
 
231
+ model = load_model(model_path)
232
 
233
+ new_data = pd.read_csv(new_data_path)
234
 
235
+ X_new = new_data.drop('label', axis=1)
236
+ y_new = new_data['label']
237
 
238
+ scaler = StandardScaler()
239
+ X_new_scaled = scaler.fit_transform(X_new)
240
+ X_new_reshaped = X_new_scaled.reshape((X_new_scaled.shape[0], 1, X_new_scaled.shape[1]))
241
 
242
+ predictions = model.predict(X_new_reshaped)
243
+ predicted_labels = np.argmax(predictions, axis=1)
244
 
245
+ label_mapping = {'NEGATIVE': 0, 'NEUTRAL': 1, 'POSITIVE': 2}
246
+ label_mapping_reverse = {v: k for k, v in label_mapping.items()}
247
+ actual_labels = y_new.replace(label_mapping).values
248
 
249
+ accuracy = np.mean(predicted_labels == actual_labels)
 
 
 
 
250
 
251
+ new_input = np.random.rand(2548, 2548) # 1 sample and 2548 features
252
+ new_input_scaled = scaler.transform(new_input)
253
+ new_input_reshaped = new_input_scaled.reshape((new_input_scaled.shape[0], 1, new_input_scaled.shape[1]))
254
 
255
+ new_prediction = model.predict(new_input_reshaped)
256
+ predicted_label = np.argmax(new_prediction, axis=1)[0]
257
+ predicted_emotion = label_mapping_reverse[predicted_label]
258
 
 
259
 
260
+ # TR Lang
261
+ if predicted_emotion == 'NEGATIVE':
262
+ predicted_emotion = 'Negatif'
263
+ elif predicted_emotion == 'NEUTRAL':
264
+ predicted_emotion = 'Nötr'
265
+ elif predicted_emotion == 'POSITIVE':
266
+ predicted_emotion = 'Pozitif'
267
 
268
+ print(f'Inputs: {new_input}')
269
+ print(f'Predicted Emotion: {predicted_emotion}')
270
+ print(f'Accuracy: %{accuracy * 100:.5f}')
271
+ ```
272
 
273
+ ## Bias, Risks, and Limitations
274
 
275
+ **bai Models;**
276
 
277
+ - _The biggest risk is wrong prediction :),_
278
+ - _It does not contain any restrictions in any area (for now),_
279
+ - _Data from brain signals do not contain personal information (because they are only mV values). Therefore, every guess made by bai is only a "GUESS"._
280
 
281
+ ### Recommendations
282
 
283
+ - _Do not experience too many mood changes,_
284
+ - _Do not take thoughts/decisions with too many different qualities,_
285
+ - _When he/she makes a lot of mistakes, do not think that he/she gave the wrong answer (think of it as giving the correct answer),_
286
 
287
+ **Note: These items are only recommendations for better operation of the model. They do not carry any risk.**
288
 
289
+ ## How to Get Started with the Model
290
 
291
+ - ```bash
292
+ pip install -r requirements.txt
293
+ ```
294
+ - Place the path of the model in the example uses.
295
+ - And run the file.
296
 
297
+ ## Evaluation
298
 
299
+ - bai-2.0 (Accuracy very high = 97%, 93621013133208)(EMOTIONAL CLASSIFICATION) (AUTONOMOUS MODEL) (High probability of OVERFITTING)
300
+ - bai-2.1 (Accuracy very high = 97%, 93621013133208)(EMOTIONAL CLASSIFICATION) (AUTONOMOUS MODEL) (Low probability of OVERFITTING)
301
+ - bai-2.2 (Accuracy very high = 94%, 8874296435272)(EMOTIONAL CLASSIFICATION) (AUTONOMOUS MODEL) (Low probability of OVERFITTING)
302
 
303
+ ### Results
304
+
305
+ [![image](https://r.resimlink.com/O7GyMoQL.png)](https://resimlink.com/O7GyMoQL)
306
+
307
+ [![image](https://r.resimlink.com/gdyCW3RP.png)](https://resimlink.com/gdyCW3RP)
308
+
309
+ [![image](https://r.resimlink.com/MpH9XS_0E.png)](https://resimlink.com/MpH9XS_0E)
310
+
311
+ [![image](https://r.resimlink.com/vsyYqJnQ4k.png)](https://resimlink.com/vsyYqJnQ4k)
312
+
313
+ #### Summary
314
+
315
+ In summary, bai models continue to be developed to learn about and predict a person's thoughts and emotions.
316
+
317
+ #### Hardware
318
+
319
+ The EEG is the only hardware!
320
+
321
+ #### Software
322
 
323
+ You can then operate this EEG device (for the time being only with audio input) with the real-time data monitoring application we have published.
324
 
325
+ GitHub: https://github.com/neurazum/Realtime-EEG-Monitoring
326
 
327
+ ## More Information
328
 
329
+ LinkedIn: https://www.linkedin.com/company/neurazum
330
 
331
  ## Model Card Authors [optional]
332
 
333
+ Eyüp İpler - https://www.linkedin.com/in/eyupipler/
334
 
335
  ## Model Card Contact
336
 
337