eyupipler commited on
Commit
c53c373
1 Parent(s): c470219

Added bai-3.0

Browse files
.gitattributes CHANGED
@@ -36,3 +36,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
36
  Main[[:space:]]Models/bai-2.0/bai-2.0.keras filter=lfs diff=lfs merge=lfs -text
37
  Main[[:space:]]Models/bai-2.1/bai-2.1.keras filter=lfs diff=lfs merge=lfs -text
38
  Main[[:space:]]Models/bai-2.2/bai-2.2.keras filter=lfs diff=lfs merge=lfs -text
 
 
36
  Main[[:space:]]Models/bai-2.0/bai-2.0.keras filter=lfs diff=lfs merge=lfs -text
37
  Main[[:space:]]Models/bai-2.1/bai-2.1.keras filter=lfs diff=lfs merge=lfs -text
38
  Main[[:space:]]Models/bai-2.2/bai-2.2.keras filter=lfs diff=lfs merge=lfs -text
39
+ Main[[:space:]]Models/bai-3.0[[:space:]]Emotion/bai-3.0[[:space:]]Emotion.keras filter=lfs diff=lfs merge=lfs -text
Main Models/bai-3.0 Emotion/README.md ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # bai-3.0 Emotion (3549313 parametre)
2
+
3
+ ## "bai-3.0 Emotion" modeli, EEG üzerine eğitilmiş dünyanın en büyük üçüncü yapay zeka modelidir. Kişinin duygu durum analizini yapmaktadır.
4
+
5
+ #### NOT: Gerçek zamanlı EEG veri takibi uygulamasına modeli entegre ederseniz, gerçek zamanlı olarak duygu tahmini yapabilmektedir. Uygulamaya erişebilmek için: https://github.com/neurazum/Realtime-EEG-Monitoring
6
+
7
+ ## -----------------------------------------------------------------------------------
8
+
9
+ # bai-3.0 Emotion (3549313 parameters)
10
+
11
+ ## The "bai-3.0 Emotion" model is the world's third largest artificial intelligence model trained on EEG. It analyzes the person's emotional state.
12
+
13
+ ## NOTE: If you integrate the model into a real-time EEG data tracking application, it can predict emotions in real time. To access the application: https://github.com/neurazum/Realtime-EEG-Monitoring
14
+ **Doğruluk/Accuracy: %97,79549718574108**
15
+
16
+ # Kullanım / Usage
17
+
18
+ ```python
19
+ import numpy as np
20
+ import pandas as pd
21
+ from sklearn.preprocessing import StandardScaler
22
+ from tensorflow.keras.models import load_model
23
+ import matplotlib.pyplot as plt
24
+
25
+ model_path = 'model-path'
26
+
27
+ model = load_model(model_path)
28
+
29
+ model_name = model_path.split('/')[-1].split('.')[0]
30
+
31
+ plt.figure(figsize=(10, 6))
32
+ plt.title(f'Duygu Tahmini ({model_name}.2)')
33
+ plt.xlabel('Zaman')
34
+ plt.ylabel('Sınıf')
35
+ plt.legend(loc='upper right')
36
+ plt.grid(True)
37
+ plt.show()
38
+ model.summary()
39
+ ```
40
+
41
+ # Tahmin / Prediction
42
+
43
+ ```python
44
+ import numpy as np
45
+ import pandas as pd
46
+ from sklearn.preprocessing import StandardScaler
47
+ from tensorflow.keras.models import load_model
48
+
49
+ model_path = 'model-path'
50
+
51
+ model = load_model(model_path)
52
+
53
+ scaler = StandardScaler()
54
+
55
+ predictions = model.predict(X_new_reshaped)
56
+ predicted_labels = np.argmax(predictions, axis=1)
57
+
58
+ label_mapping = {'NEGATIVE': 0, 'NEUTRAL': 1, 'POSITIVE': 2}
59
+ label_mapping_reverse = {v: k for k, v in label_mapping.items()}
60
+
61
+ #new_input = np.array([[23, 465, 12, 9653] * 637])
62
+ new_input = np.random.rand(1, 2548) # 1 örnek ve 2548 özellik
63
+ new_input_scaled = scaler.fit_transform(new_input)
64
+ new_input_reshaped = new_input_scaled.reshape((new_input_scaled.shape[0], 1, new_input_scaled.shape[1]))
65
+
66
+ new_prediction = model.predict(new_input_reshaped)
67
+ predicted_label = np.argmax(new_prediction, axis=1)[0]
68
+ predicted_emotion = label_mapping_reverse[predicted_label]
69
+
70
+ if predicted_emotion == 'NEGATIVE':
71
+ predicted_emotion = 'Negatif'
72
+ elif predicted_emotion == 'NEUTRAL':
73
+ predicted_emotion = 'Nötr'
74
+ elif predicted_emotion == 'POSITIVE':
75
+ predicted_emotion = 'Pozitif'
76
+
77
+ print(f'Giriş Verileri: {new_input}')
78
+ print(f'Tahmin Edilen Duygu: {predicted_emotion}')
79
+ ```
80
+
81
+ # Python Sürümü / Python Version
82
+
83
+ ### 3.9 <=> 3.13
84
+
85
+ # Modüller / Modules
86
+
87
+ ```bash
88
+ matplotlib==3.8.0
89
+ matplotlib-inline==0.1.6
90
+ numpy==1.26.4
91
+ pandas==2.2.2
92
+ scikit-learn==1.3.1
93
+ tensorflow==2.15.0
94
+ ```
Main Models/bai-3.0 Emotion/bai-3.0 Emotion.keras ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8f22aaf36dcb0b305621883396c79e2ba01a439b847e1c1d58bdd54ec0c0b620
3
+ size 14478378