eyupipler commited on
Commit
e5f0fa6
1 Parent(s): a3a81b7

Added bai-3.1 Emotion

Browse files
.gitattributes CHANGED
@@ -37,3 +37,4 @@ Main[[:space:]]Models/bai-2.0/bai-2.0.keras filter=lfs diff=lfs merge=lfs -text
37
  Main[[:space:]]Models/bai-2.1/bai-2.1.keras filter=lfs diff=lfs merge=lfs -text
38
  Main[[:space:]]Models/bai-2.2/bai-2.2.keras filter=lfs diff=lfs merge=lfs -text
39
  Main[[:space:]]Models/bai-3.0[[:space:]]Emotion/bai-3.0[[:space:]]Emotion.keras filter=lfs diff=lfs merge=lfs -text
 
 
37
  Main[[:space:]]Models/bai-2.1/bai-2.1.keras filter=lfs diff=lfs merge=lfs -text
38
  Main[[:space:]]Models/bai-2.2/bai-2.2.keras filter=lfs diff=lfs merge=lfs -text
39
  Main[[:space:]]Models/bai-3.0[[:space:]]Emotion/bai-3.0[[:space:]]Emotion.keras filter=lfs diff=lfs merge=lfs -text
40
+ Main[[:space:]]Models/bai-3.1[[:space:]]Emotion/bai-3.1[[:space:]]Emotion.keras filter=lfs diff=lfs merge=lfs -text
Main Models/bai-3.1 Emotion/README.md ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # bai-3.1 Emotion (3549313 parametre)
2
+
3
+ ## "bai-3.1 Emotion" modeli, bir önceki sürümüne göre daha optimize ve kararlı hale getirilmiş versiyonudur. Tüm işlevleri aynıdır.
4
+
5
+ #### NOT: Gerçek zamanlı EEG veri takibi uygulamasına modeli entegre ederseniz, gerçek zamanlı olarak duygu tahmini yapabilmektedir. Uygulamaya erişebilmek için: https://github.com/neurazum/Realtime-EEG-Monitoring
6
+
7
+ ## -----------------------------------------------------------------------------------
8
+
9
+ # bai-3.1 Emotion (3549313 parameters)
10
+
11
+ ## The "bai-3.1 Emotion" model is a more optimized and stable version compared to the previous version. All functions are the same.
12
+
13
+ ## NOTE: If you integrate the model into a real-time EEG data tracking application, it can predict emotions in real time. To access the application: https://github.com/neurazum/Realtime-EEG-Monitoring
14
+ **Doğruluk/Accuracy: %95,1219512195122**
15
+
16
+ [![bai-3.0](https://img.youtube.com/vi/qUkId3S9W94/0.jpg)](https://www.youtube.com/watch?v=qUkId3S9W94)
17
+
18
+ # Kullanım / Usage
19
+
20
+ ```python
21
+ import numpy as np
22
+ import pandas as pd
23
+ from sklearn.preprocessing import StandardScaler
24
+ from tensorflow.keras.models import load_model
25
+ import matplotlib.pyplot as plt
26
+
27
+ model_path = 'model-path'
28
+
29
+ model = load_model(model_path)
30
+
31
+ model_name = model_path.split('/')[-1].split('.')[0]
32
+
33
+ plt.figure(figsize=(10, 6))
34
+ plt.title(f'Duygu Tahmini ({model_name}.1)')
35
+ plt.xlabel('Zaman')
36
+ plt.ylabel('Sınıf')
37
+ plt.legend(loc='upper right')
38
+ plt.grid(True)
39
+ plt.show()
40
+ model.summary()
41
+ ```
42
+
43
+ # Tahmin / Prediction
44
+
45
+ ```python
46
+ import numpy as np
47
+ import pandas as pd
48
+ from sklearn.preprocessing import StandardScaler
49
+ from tensorflow.keras.models import load_model
50
+
51
+ model_path = 'model-path'
52
+
53
+ model = load_model(model_path)
54
+
55
+ scaler = StandardScaler()
56
+
57
+ predictions = model.predict(X_new_reshaped)
58
+ predicted_labels = np.argmax(predictions, axis=1)
59
+
60
+ label_mapping = {'NEGATIVE': 0, 'NEUTRAL': 1, 'POSITIVE': 2}
61
+ label_mapping_reverse = {v: k for k, v in label_mapping.items()}
62
+
63
+ #new_input = np.array([[23, 465, 12, 9653] * 637])
64
+ new_input = np.random.rand(1, 2548) # 1 örnek ve 2548 özellik
65
+ new_input_scaled = scaler.fit_transform(new_input)
66
+ new_input_reshaped = new_input_scaled.reshape((new_input_scaled.shape[0], 1, new_input_scaled.shape[1]))
67
+
68
+ new_prediction = model.predict(new_input_reshaped)
69
+ predicted_label = np.argmax(new_prediction, axis=1)[0]
70
+ predicted_emotion = label_mapping_reverse[predicted_label]
71
+
72
+ if predicted_emotion == 'NEGATIVE':
73
+ predicted_emotion = 'Negatif'
74
+ elif predicted_emotion == 'NEUTRAL':
75
+ predicted_emotion = 'Nötr'
76
+ elif predicted_emotion == 'POSITIVE':
77
+ predicted_emotion = 'Pozitif'
78
+
79
+ print(f'Giriş Verileri: {new_input}')
80
+ print(f'Tahmin Edilen Duygu: {predicted_emotion}')
81
+ ```
82
+
83
+ # Python Sürümü / Python Version
84
+
85
+ ### 3.9 <=> 3.13
86
+
87
+ # Modüller / Modules
88
+
89
+ ```bash
90
+ matplotlib==3.8.0
91
+ matplotlib-inline==0.1.6
92
+ numpy==1.26.4
93
+ pandas==2.2.2
94
+ scikit-learn==1.3.1
95
+ tensorflow==2.15.0
96
+ ```
Main Models/bai-3.1 Emotion/bai-3.1 Emotion.keras ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:db15893f52bd3061b8f53eb37230b8e9032a3bae5b65fa0c5782c1ad82ab7a64
3
+ size 42946079