# bai-2.2 (164790 parametre) ## bai-2.0 ve 2.1 sürümlerinin daha hızlı ve optimize edilmiş versiyonudur. Tüm işlevleri aynıdır. #### NOT: Gerçek zamanlı EEG veri takibi uygulamasına modeli entegre ederseniz, gerçek zamanlı olarak duygu tahmini yapabilmektedir. Uygulamaya erişebilmek için: https://github.com/neurazum/Realtime-EEG-Monitoring ## ----------------------------------------------------------------------------------- # bai-2.2 (164790 parameters) ## It is a faster and optimized version of bai-2.0 and 2.1. All functions are the same. #### NOTE: If you integrate the model into a real-time EEG data tracking application, it can predict emotions in real time. To access the application: https://github.com/neurazum/Realtime-EEG-Monitoring **Doğruluk/Accuracy: %94,8874296435272** # Kullanım / Usage ```python import numpy as np import pandas as pd from sklearn.preprocessing import StandardScaler from tensorflow.keras.models import load_model import matplotlib.pyplot as plt model_path = 'model-path' model = load_model(model_path) model_name = model_path.split('/')[-1].split('.')[0] plt.figure(figsize=(10, 6)) plt.title(f'Duygu Tahmini ({model_name}.1)') plt.xlabel('Zaman') plt.ylabel('Sınıf') plt.legend(loc='upper right') plt.grid(True) plt.show() model.summary() ``` # Tahmin / Prediction ```python import numpy as np import pandas as pd from sklearn.preprocessing import StandardScaler from tensorflow.keras.models import load_model model_path = 'model-path' model = load_model(model_path) scaler = StandardScaler() predictions = model.predict(X_new_reshaped) predicted_labels = np.argmax(predictions, axis=1) label_mapping = {'NEGATIVE': 0, 'NEUTRAL': 1, 'POSITIVE': 2} label_mapping_reverse = {v: k for k, v in label_mapping.items()} #new_input = np.array([[23, 465, 12, 9653] * 637]) new_input = np.random.rand(1, 2548) # 1 örnek ve 2548 özellik new_input_scaled = scaler.fit_transform(new_input) new_input_reshaped = new_input_scaled.reshape((new_input_scaled.shape[0], 1, new_input_scaled.shape[1])) new_prediction = model.predict(new_input_reshaped) predicted_label = np.argmax(new_prediction, axis=1)[0] predicted_emotion = label_mapping_reverse[predicted_label] if predicted_emotion == 'NEGATIVE': predicted_emotion = 'Negatif' elif predicted_emotion == 'NEUTRAL': predicted_emotion = 'Nötr' elif predicted_emotion == 'POSITIVE': predicted_emotion = 'Pozitif' print(f'Giriş Verileri: {new_input}') print(f'Tahmin Edilen Duygu: {predicted_emotion}') ```