ppo-LunarLander-v2 / config.json
ezrab's picture
Upload PPO LunarLander-v2 trained agent
9cd54bc verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2ec16e3d90>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2ec16e3e20>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2ec16e3eb0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2ec16e3f40>", "_build": "<function ActorCriticPolicy._build at 0x7f2ec16f0040>", "forward": "<function ActorCriticPolicy.forward at 0x7f2ec16f00d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f2ec16f0160>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2ec16f01f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f2ec16f0280>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2ec16f0310>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2ec16f03a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2ec16f0430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f2ec16d7b80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1736534495924477676, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGaK3juP2yi8xt5huk3ABD1Fk2o7EeqbNwAAgD8AAIA/mgFPu9L3y7sMhRC9dsqAvvL/BL1agHc+AACAPwAAAABNrHC9YuNGPjEMFj5h2Jq+0V5dPSRLr7wAAAAAAAAAAIDgOL34Efs+KidTPXITk750G8Q8TkLZPAAAAAAAAAAAM+abvcoMrj4I7aU9jz2rvrUiaTt4fPA7AAAAAAAAAABmcLg99CexP14WAT81pIy+IqyXPbDfnT4AAAAAAAAAAA1u8L39y9E+D/JGPprJpb51L9I81SvuPQAAAAAAAAAAs+1HPqoyMT8LWOy+TV2qvl5hYj6+dau+AAAAAAAAAAAzZ408qekHvF45njt7w2E8J75Vveh6Pz0AAIA/AACAPwAAFbrcVm68Gt5dPen+gD1x/bM9eqMQvAAAgD8AAIA/M/aEPmX5ZD9bRpG+ol6RvsvelD52OY6+AAAAAAAAAADNXs+8vtnBPSpdWT06fD2+cnnFPb+ElL0AAAAAAAAAAM3tszwRyrI/bx6BPVwpsL6OMWQ8+JHdPQAAAAAAAAAAM0L8vBQyk7p4ClY2gDVYMXX8C7s0GYK1AACAPwAAgD9NSIg97P7eu7Z6TbuDxfm9vlJRvUa91b4AAIA/AACAPxoo373akag/RDm4vjJS8b5W8Iu+upXKvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHFVebNKRMiMAWyUTScBjAF0lEdApPmKeGwiaHV9lChoBkdAb4/W4EwFkmgHTRMBaAhHQKT5ltfoicJ1fZQoaAZHQHC102P1ct5oB00XAWgIR0Ck+dzkIX0odX2UKGgGR0Bx7t8CxNZeaAdL/GgIR0Ck+gL39JjEdX2UKGgGR0Bu59/4IrvtaAdNLAFoCEdApPpReNT99HV9lChoBkdAcMkl6JIlMWgHTRMBaAhHQKT6sc/dIoV1fZQoaAZHQHAykIX0oSdoB00mAWgIR0Ck+tVW8yvcdX2UKGgGR0BwZ/e9Ba9saAdNFwFoCEdApPrn0K7ZnXV9lChoBkdAcawDBdld1WgHTRkBaAhHQKT7qkPczqN1fZQoaAZHQHFLgJ5VwP1oB00aAWgIR0Ck+7xwQ176dX2UKGgGR0BwL+MtK7I1aAdNGgFoCEdApPvEMG5c1XV9lChoBkdAcmZV6eGwimgHTRMBaAhHQKT8AeumrKh1fZQoaAZHQHD7CZ8a4tpoB00GAWgIR0Ck/HVPepGXdX2UKGgGR0BxZLofSx7iaAdL9mgIR0Ck/IcscyWSdX2UKGgGR0A2xYDklu3uaAdL1WgIR0Ck/Rgx8D0UdX2UKGgGR0BxEcKPXCj2aAdNCAFoCEdApP0nZuhsZnV9lChoBkdAcL/Q6IWP92gHTREBaAhHQKT9kbR4QjF1fZQoaAZHQG3Wfo7muDBoB00dAWgIR0Ck/bUW2w3YdX2UKGgGR0Bw90AbQ1JlaAdL/mgIR0Ck/gQrUb1idX2UKGgGR0Bw1aC2+fyxaAdNIwFoCEdApP4bO7g883V9lChoBkdAUTga1kUbk2gHS+poCEdApP5LH4oJA3V9lChoBkdAcO2M/QjUu2gHTRABaAhHQKT+3FR51Nh1fZQoaAZHQHG0tgF5fMRoB005AWgIR0Ck/2y5iExqdX2UKGgGR0BvbW4TbnHOaAdL8mgIR0Ck/8eXJHRUdX2UKGgGR0Bw1amR/3FlaAdNEwFoCEdApQADHEMspXV9lChoBkdAbs7U6xPfsWgHTSABaAhHQKUAJbQC0Wx1fZQoaAZHQG0Ny6+WWyFoB00ZAWgIR0ClACTHbRF7dX2UKGgGR0BxJ06JZW7waAdL9WgIR0ClAFVbqyGBdX2UKGgGR0BwB6S+xnnMaAdNBgFoCEdApQCkh3aBZ3V9lChoBkdAcoNEmICU5mgHTRkBaAhHQKUBkZrHlwN1fZQoaAZHQEwjp1RtP55oB0vdaAhHQKUBs7uDzy11fZQoaAZHQHJ3tuHerMloB00iAWgIR0ClAcfQBxPwdX2UKGgGR0Bwe+Haews5aAdNCQFoCEdApQH4cDKYA3V9lChoBkdAckeWAPNFB2gHTRQBaAhHQKUCAMXJo011fZQoaAZHQFFpWEK3NLVoB0vsaAhHQKUCIBNmDlJ1fZQoaAZHQHDN2P91loVoB00FAWgIR0ClAjO7QLNOdX2UKGgGR0BAq7hm5DqoaAdLzmgIR0ClRgtJOFg2dX2UKGgGR0BiEjTH80k4aAdN6ANoCEdApUZDnTy8SXV9lChoBkdAbkvvlU6xPmgHTSkBaAhHQKVGUtzS1E51fZQoaAZHQHImSY5T6zpoB00SAWgIR0ClRmzf779AdX2UKGgGR0By9OsRxtHhaAdNBAFoCEdApUZ8KRdQf3V9lChoBkdAcf7faHsTnWgHS+JoCEdApUbBHCoCMnV9lChoBkdAcXgNKyv9tWgHTQ8BaAhHQKVG4HKwIMV1fZQoaAZHQG4VcG9pRGdoB00cAWgIR0ClRu0Qsf7rdX2UKGgGR0ByUcsd1dPdaAdNDwFoCEdApUcFs+FDfHV9lChoBkdAcHnbvPTodWgHS/hoCEdApUfTyUcGT3V9lChoBkdAcctWhysCDGgHTQIBaAhHQKVH2rhisn11fZQoaAZHQHMP59Vmz0JoB0vvaAhHQKVH9HVf/m11fZQoaAZHQG418ZLqUvBoB00HAWgIR0ClSBSeAd4ndX2UKGgGR0ByHtNmDlHSaAdL+GgIR0ClSC19nbqRdX2UKGgGR0Bu68cZLqUvaAdNDAFoCEdApUh6pYLb6HV9lChoBkdAccFo6S1VpGgHTScBaAhHQKVImHGjsUt1fZQoaAZHQHAcrFKkEcNoB0vzaAhHQKVJAvnKW9l1fZQoaAZHQFDyM10knkVoB0u4aAhHQKVJF/cWTHN1fZQoaAZHQHGs0uUUwi9oB0v7aAhHQKVJSN6w+t91fZQoaAZHQHNdGKuSwGJoB0vtaAhHQKVJVWMCLdh1fZQoaAZHQHHZXdsSCe5oB0v/aAhHQKVJYs7MgU11fZQoaAZHQDok9ovi97FoB0vNaAhHQKVJgCbtqpN1fZQoaAZHQG/ju+AVfu1oB0vxaAhHQKVJz6E8JUp1fZQoaAZHQHAFRKQJXyRoB00QAWgIR0ClSgEzfrKOdX2UKGgGR0BxbQ0Q9RrKaAdNOgFoCEdApUopd8iOenV9lChoBkdAcgKR+BpYcWgHS/1oCEdApUrb3225QXV9lChoBkdAbb2zl90A92gHS/1oCEdApUsYJTl1bXV9lChoBkdAcWkAj6eoUGgHTRMBaAhHQKVLICjDbah1fZQoaAZHQFFgD9wWFexoB0vjaAhHQKVLMry1/lR1fZQoaAZHQHD6DOxB3RpoB00fAWgIR0ClS2U2LpA2dX2UKGgGR0BykkGSpzcRaAdNHwFoCEdApUuefh/AkHV9lChoBkdAcmwmeDnNgWgHTR8BaAhHQKVMFwZwXIl1fZQoaAZHQHCBUaMrEtNoB00EAWgIR0ClTElf7aZhdX2UKGgGR0By53ollbu/aAdNDAFoCEdApUxOUwBYFXV9lChoBkdAcA4X9R77bmgHTRIBaAhHQKVMvV81Gb11fZQoaAZHQEx8s052hZhoB0vOaAhHQKVMyxDb8FZ1fZQoaAZHQHEbkiliz9loB00hAWgIR0ClTOL3TNMXdX2UKGgGR0BwGoFvAGjcaAdL9WgIR0ClTOie2/i6dX2UKGgGR0Bw1nm/336AaAdNEgFoCEdApUzt8Ti84HV9lChoBkdAccCRe1KGtmgHTR4BaAhHQKVM81WsA/91fZQoaAZHQHKJYrFwT/RoB0vuaAhHQKVNASU1Q691fZQoaAZHQHEsQtapxWFoB0voaAhHQKVNtBiTdLx1fZQoaAZHQHB56EWZZ0VoB0vxaAhHQKVOJXoTwlV1fZQoaAZHQG5OguRLbpNoB0vvaAhHQKVOVah6By11fZQoaAZHQHGuOy7f51xoB00OAWgIR0ClTnPX9R77dX2UKGgGR0ByiKEAYHgQaAdNJgFoCEdApU63x8UmD3V9lChoBkdAcUkO5avA5GgHTQQBaAhHQKVO0s3hn8N1fZQoaAZHQHMzH6ZYxL1oB0voaAhHQKVPIqhDgIh1fZQoaAZHQHL6jcqOLixoB0vuaAhHQKVPNWDHwPR1fZQoaAZHQG+Y4qgAZKpoB0v9aAhHQKVPN2bobGZ1fZQoaAZHQHArCu6mO2loB0v9aAhHQKVQDb/wRXh1fZQoaAZHQHCBYE0SAYpoB00KAWgIR0ClUCPduYQbdX2UKGgGR0BwpYleF+NMaAdNEAFoCEdApVArPBzmwXV9lChoBkdAcw/MMI/qxGgHTQsBaAhHQKVQQ7YChex1fZQoaAZHQHHOnFglWwNoB00RAWgIR0ClUFsjmjj8dX2UKGgGR0BzQUpc5bQkaAdNGQFoCEdApVB4Z4wAVHV9lChoBkdAcZRQ+EAYHmgHTTYBaAhHQKVQ4KBNEgJ1fZQoaAZHQD5jqptJnQJoB0vEaAhHQKVQ/shxHXp1fZQoaAZHQHFuDqfOD8NoB00HAWgIR0ClURk8RtgsdX2UKGgGR0Bx7NZ/0/W2aAdNCAFoCEdApVGF8NQTEnV9lChoBkdAb61BD5TIemgHTQABaAhHQKVRmFOfukV1fZQoaAZHQHC+6m8/UvxoB0v0aAhHQKVSPqKxcFB1fZQoaAZHQHEkNmDlHSZoB00YAWgIR0ClUk0iILw4dX2UKGgGR0Bwcjy/bj95aAdNGQFoCEdApVJszdk8R3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 496, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 16, "n_epochs": 8, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.6.56+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Nov 10 10:07:59 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.4.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}