File size: 4,244 Bytes
45cf744 7e84f0c 45cf744 1d7474a 45cf744 1d7474a 45cf744 1d7474a 45cf744 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 |
---
license: apache-2.0
tags:
- generated_from_trainer
- sibyl
datasets:
- imdb
metrics:
- accuracy
model-index:
- name: bert-base-uncased-imdb
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: imdb
type: imdb
args: plain_text
metrics:
- type: accuracy
value: 0.91264
name: Accuracy
- task:
type: text-classification
name: Text Classification
dataset:
name: imdb
type: imdb
config: plain_text
split: test
metrics:
- type: accuracy
value: 0.93036
name: Accuracy
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNjlmYzNkZTNjOTNhZWY0YTg3OTdmYjIwYTY0ZmI5MDUwYjJkNTk5YTY5MDEyYTcyMDMzODlmZjQxZDY1ODUyYiIsInZlcnNpb24iOjF9.h_9Qsgg_byUX13nnnaNPp_mnT9KR6QvB0YvCFxy71UFW3YcsmpNmUTt8COOvEKRotNVStlKGnAnOckcBzRYtDg
- type: precision
value: 0.924887449648527
name: Precision
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOTExMGViZWExYmQ3M2Y3Mzc0MTNjYTZmNjcyZWQ4Y2VkYmNkM2E4MTRlMjEyZTlhY2I4NGQ4NDhkMWY3NGFkNyIsInZlcnNpb24iOjF9.XfxxeG40FeIpPiJxjbDEehMoYd-fY0pXO9Ak-abMd6-TLpSehPoeb27TJFxkdYqBGpekqD3QTWd3nQ8OIoEzCw
- type: recall
value: 0.9368
name: Recall
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZWZkMTU3ZDFmMGVlZDJlZTYzMzc0MThkYjI5NTg4MTE5ODhhOTdkY2E3ZGJmODUxY2UzZDQ4YjJmMGIyMWZlMCIsInZlcnNpb24iOjF9.oONtL0mKEwKLSigAC2Gvy67PyjNfWSZlP-rcL5CTlj_aGrt4znzsBYN2i0RpDfsTCACuLGAOyaL2cwnpwi2WDw
- type: auc
value: 0.9745117632000001
name: AUC
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMTIwMTM5NTcxZmU2MDc2ZjhhZmNkY2ZjMWZlODA1ZTgwYmZjMTA0ZjlmNWM0NGQwNjhjMDI0ZDJjMDVjOTQ0NCIsInZlcnNpb24iOjF9.LGcnjiLWV2A3aNz7qnnq4M__F1uw3ox3HjVptRCFbW9DxpKXstGdtsE6CbvBWpWnGxF_cvyB4ja4ONNYJr2dCw
- type: f1
value: 0.930805611859624
name: F1
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMmIzM2M3NGIwNjRhZmZkMTQ1MDgyMTRkMzVlMzg3NDFlYWE2ZGEyOGVmYTdiZTAxYjZlNWJhMjRiYTEwODA0YSIsInZlcnNpb24iOjF9.RCaUiX3VEqGZ8hY-O2eTHq3BAZWlPpUV_Sz9qK3gnrSY6kiv4g-WO_DHeQ0zjnNPYNoYJCWXXsM1LNt3oFv2Aw
- type: loss
value: 0.38993313908576965
name: loss
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYzZmMDBhZWVmNmEzZmExNDM4ODY3N2Q5ZjEwMGJhZGNiODhiYzUzM2M2Y2FkZGQwNmJmYWIyM2VjOTE4ZDkzYiIsInZlcnNpb24iOjF9.5zqlGhogErsqwbFZr5FxdFZ3iipRUHWZaoNRRQ10X2N13qoazK24tTRkc0NajCiZfj7uIIio-Itk4SNxCqQZBA
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-uncased-imdb
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the imdb dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4942
- Accuracy: 0.9126
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1546
- training_steps: 15468
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.3952 | 0.65 | 2000 | 0.4012 | 0.86 |
| 0.2954 | 1.29 | 4000 | 0.4535 | 0.892 |
| 0.2595 | 1.94 | 6000 | 0.4320 | 0.892 |
| 0.1516 | 2.59 | 8000 | 0.5309 | 0.896 |
| 0.1167 | 3.23 | 10000 | 0.4070 | 0.928 |
| 0.0624 | 3.88 | 12000 | 0.5055 | 0.908 |
| 0.0329 | 4.52 | 14000 | 0.4342 | 0.92 |
### Framework versions
- Transformers 4.10.2
- Pytorch 1.7.1
- Datasets 1.6.1
- Tokenizers 0.10.3
|