--- license: apache-2.0 tags: - generated_from_trainer - sibyl datasets: - imdb metrics: - accuracy base_model: bert-base-uncased model-index: - name: bert-base-uncased-imdb results: - task: type: text-classification name: Text Classification dataset: name: imdb type: imdb args: plain_text metrics: - type: accuracy value: 0.91264 name: Accuracy --- # bert-base-uncased-imdb This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.4942 - Accuracy: 0.9126 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1546 - training_steps: 15468 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.3952 | 0.65 | 2000 | 0.4012 | 0.86 | | 0.2954 | 1.29 | 4000 | 0.4535 | 0.892 | | 0.2595 | 1.94 | 6000 | 0.4320 | 0.892 | | 0.1516 | 2.59 | 8000 | 0.5309 | 0.896 | | 0.1167 | 3.23 | 10000 | 0.4070 | 0.928 | | 0.0624 | 3.88 | 12000 | 0.5055 | 0.908 | | 0.0329 | 4.52 | 14000 | 0.4342 | 0.92 | ### Framework versions - Transformers 4.10.2 - Pytorch 1.7.1 - Datasets 1.6.1 - Tokenizers 0.10.3