# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from transformers import PretrainedConfig class MobileLLMConfig(PretrainedConfig): model_type = "mobilellm" keys_to_ignore_at_inference = ["past_key_values"] def __init__( self, attention_bias=False, bos_token_id=1, eos_token_id=2, hidden_act="silu", hidden_size=1600, initializer_range=0.02, intermediate_size=4352, num_hidden_layers=54, num_attention_heads=25, num_key_value_heads=5, pretraining_tp=1, rms_norm_eps=1e-5, rope_scaling=None, rope_theta=10000.0, max_position_embeddings=2048, tie_word_embeddings=False, use_cache=True, bf16=False, fp16=True, fp32=False, vocab_size=32000, share_embedding=True, **kwargs, ): self.attention_bias = attention_bias self.bos_token_id = bos_token_id self.eos_token_id = eos_token_id self.hidden_act = hidden_act self.hidden_size = hidden_size self.initializer_range = initializer_range self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.num_key_value_heads = num_key_value_heads self.pretraining_tp = pretraining_tp self.rms_norm_eps = rms_norm_eps self.rope_scaling = rope_scaling self.rope_theta = rope_theta self.max_position_embeddings = max_position_embeddings self.use_cache = use_cache self.bf16 = bf16 self.fp16 = fp16 self.fp32 = fp32 self.vocab_size = vocab_size self.share_embedding = share_embedding super().__init__( tie_word_embeddings=tie_word_embeddings, **kwargs )