Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,150 @@
|
|
1 |
-
---
|
2 |
-
license: cc-by-nc-4.0
|
3 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-nc-4.0
|
3 |
+
---
|
4 |
+
# Model Details
|
5 |
+
|
6 |
+
MobileLLM is introduced: "[MobileLLM: Optimizing Sub-billion Parameter Language Models for On-Device Use Cases](https://arxiv.org/abs/2402.14905)", published in ICML 2024.
|
7 |
+
|
8 |
+
**Model Developer**: Meta
|
9 |
+
|
10 |
+
**Model Architecture**: MobileLLM is an auto-regressive language model leveraging an optimized transformer architecture, specifically engineered for on-device applications with constrained resources.
|
11 |
+
MobileLLM integrated several key techniques including: (1) SwiGLU activation function, (2) deep and thin architectures, (3) embedding sharing, (4) grouped-query attention. MobileLLM-125M/350M attains a remarkable 2.7%/4.3% accuracy boost over preceding 125M/350M SoTA models on zero-shot commonsense reasoning tasks. In our updated version, we further demonstrate that our design philosophy scales effectively to larger models, with SoTA results for MobileLLM-600M/1B/1.5B.
|
12 |
+
|
13 |
+
![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/660f893bae89429c07a32cdb/ahtsJXC5vBVIdmsMQDNHv.jpeg)
|
14 |
+
|
15 |
+
| | # Layers | # Attnetion Heads | # KV Heads | Token Dimension | Params |
|
16 |
+
| --- | --- | --- | --- | --- | --- |
|
17 |
+
| MobileLLM-125M | 30 | 9 | 3 | 576 | 124.6M |
|
18 |
+
| MobileLLM-350M | 32 | 15 | 5 | 960 | 345.3M |
|
19 |
+
| MobileLLM-600M | 40 | 18 | 6 | 1152 | 603.1M |
|
20 |
+
| MobileLLM-1B | 54 | 20 | 5 | 1280 | 1.01B |
|
21 |
+
| MobileLLM-1.5B | 54 | 25 | 5 | 1600 | 1.51B |
|
22 |
+
|
23 |
+
| | Training Data | Input modalities | Output modalities | Context Length | GQA | Shared Embeddings | Token count |
|
24 |
+
| --- | --- | --- | --- | --- | --- | --- | --- |
|
25 |
+
| MobileLLM-125M | Publicly available online data. | Text | Text | 2k | Yes | Yes | 1T tokens |
|
26 |
+
| MobileLLM-350M | Publicly available online data. | Text | Text | 2k | Yes | Yes | 1T tokens |
|
27 |
+
| MobileLLM-600M | Publicly available online data. | Text | Text | 2k | Yes | Yes | 1T tokens |
|
28 |
+
| MobileLLM-1B | Publicly available online data. | Text | Text | 2k | Yes | Yes | 1T tokens |
|
29 |
+
| MobileLLM-1.5B | Publicly available online data. | Text | Text | 2k | Yes | Yes | 1T tokens |
|
30 |
+
|
31 |
+
|
32 |
+
# How to use
|
33 |
+
We are providing 2 ways to run the model:
|
34 |
+
|
35 |
+
[HuggingFace](#huggingface)
|
36 |
+
|
37 |
+
[MobileLLM codebase](#mobilellm-codebase)
|
38 |
+
|
39 |
+
## HuggingFace
|
40 |
+
To load the pretrained model for further finetuning or evaluation:
|
41 |
+
```bash
|
42 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
43 |
+
tokenizer = AutoTokenizer.from_pretrained("facebook/MobileLLM-1B", use_fast_tokenizer=False)
|
44 |
+
model = AutoModelForCausalLM.from_pretrained("facebook/MobileLLM-1B", trust_remote_code=True)
|
45 |
+
```
|
46 |
+
Note that the default tokenizer does not contain special tokens. For example you can use:
|
47 |
+
```bash
|
48 |
+
tokenizer.add_special_tokens(
|
49 |
+
{
|
50 |
+
"eos_token": "</s>",
|
51 |
+
"bos_token": "<s>",
|
52 |
+
"unk_token": "<unk>",
|
53 |
+
}
|
54 |
+
)
|
55 |
+
```
|
56 |
+
## MobileLLM codebase
|
57 |
+
We provide the pretraining code in https://github.com/facebookresearch/MobileLLM
|
58 |
+
|
59 |
+
```bash
|
60 |
+
> git clone https://github.com/facebookresearch/MobileLLM
|
61 |
+
> pip install -r requirement.txt
|
62 |
+
|
63 |
+
# data pre-process and specify the data path in pretrain.sh
|
64 |
+
# run pretraining
|
65 |
+
> bash pretrain.sh
|
66 |
+
```
|
67 |
+
We also provide evaluation script for calculating ppl of wikitext-2 test split:
|
68 |
+
```bash
|
69 |
+
> bash eval.sh
|
70 |
+
```
|
71 |
+
|
72 |
+
You can find more details in the GitHub repo.
|
73 |
+
|
74 |
+
# Training cost
|
75 |
+
It takes the following number of days to train MobileLLM on 1T tokens using 32 NVIDIA A100 80G GPUs.
|
76 |
+
| 125M | 350M | 600M | 1B | 1.5B |
|
77 |
+
| --- | --- | --- | --- | --- |
|
78 |
+
| ~3 days| ~6 days| ~8 days | ~12 days | ~18 days |
|
79 |
+
|
80 |
+
|
81 |
+
# Evaluation
|
82 |
+
We evaluate the pretrained MobileLLM models on Zero-shot Common Sense Reasoning tasks
|
83 |
+
|
84 |
+
## MobileLLM-125M
|
85 |
+
|
86 |
+
| model | boolq | piqa | siqa | hellaswag | winogrande | arc_easy | arc_challenge | obqa | avg. |
|
87 |
+
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
|
88 |
+
| OPT-125M | 41.3 | 25.2 | 57.5 | 62.0 | 41.9 | 31.1 | 31.2 | 50.8 | 42.6 |
|
89 |
+
| GPT-neo-125M | 40.7 | 24.8 | 61.3 | 62.5 | 41.9 | 29.7 | 31.6 | 50.7 | 42.9 |
|
90 |
+
| Pythia-160M | 40.0 | 25.3 | 59.5 | 62.0 | 41.5 | 29.9 | 31.2 | 50.9 | 42.5 |
|
91 |
+
| **MobileLLM-125M** | 43.9 | 27.1 | 60.2 | 65.3 | 42.4 | 38.9 | 39.5 | 53.1 | **46.3** |
|
92 |
+
| **MobileLLM-LS-125M** | 45.8 | 28.7 | 60.4 | 65.7 | 42.9 | 39.5 | 41.1 | 52.1 | **47.0** |
|
93 |
+
|
94 |
+
## MobileLLM-350M
|
95 |
+
|
96 |
+
| model | boolq | piqa | siqa | hellaswag | winogrande | arc_easy | arc_challenge | obqa | avg. |
|
97 |
+
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
|
98 |
+
| OPT-350M | 41.9 | 25.7 | 54.0 | 64.8 | 42.6 | 36.2 | 33.3 | 52.4 | 43.9 |
|
99 |
+
| Pythia-410M | 47.1 | 30.3 | 55.3 | 67.2 | 43.1 | 40.1 | 36.2 | 53.4 | 46.6 |
|
100 |
+
| **MobileLLM-350M** | 53.8 | 33.5 | 62.4 | 68.6 | 44.7 | 49.6 | 40.0 | 57.6 | **51.3** |
|
101 |
+
| **MobileLLM-LS-350M** | 54.4 | 32.5 | 62.8 | 69.8 | 44.1 | 50.6 | 45.8 | 57.2 | **52.1** |
|
102 |
+
|
103 |
+
## MobileLLM-600M
|
104 |
+
|
105 |
+
| model | boolq | piqa | siqa | hellaswag | winogrande | arc_easy | arc_challenge | obqa | avg. |
|
106 |
+
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
|
107 |
+
| Qwen1.5-500M | 54.7 | 32.1 | 46.9 | 68.9 | 46.0 | 48.8 | 37.7 | 55.0 | 48.8 |
|
108 |
+
| BLOOM-560M | 43.7 | 27.5 | 53.7 | 65.1 | 42.5 | 36.5 | 32.6 | 52.2 | 44.2 |
|
109 |
+
| MobiLlama-800M | 52.0 | 31.7 | 54.6 | 73.0 | 43.3 | 52.3 | 42.5 | 56.3 | 50.7 |
|
110 |
+
| **MobileLLM-600M** | 58.1 | 35.8 | 61.0 | 72.3 | 44.9 | 55.9 | 47.9 | 58.6 | **54.3** |
|
111 |
+
|
112 |
+
## MobileLLM-1B
|
113 |
+
|
114 |
+
| model | boolq | piqa | siqa | hellaswag | winogrande | arc_easy | arc_challenge | obqa | avg. |
|
115 |
+
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
|
116 |
+
| Pythia-1B | 49.9 | 30.4 | 58.7 | 69.2 | 43.3 | 47.4 | 38.6 | 52.2 | 48.7 |
|
117 |
+
| MobiLlama-1B | 59.7 | 38.4 | 59.2 | 74.5 | 44.9 | 62.0 | 43.7 | 59.0 | 55.2 |
|
118 |
+
| Falcon-1B | 59.5 | 38.4 | 63.9 | 74.6 | 44.6 | 62.9 | 45.6 | 60.9 | 56.3 |
|
119 |
+
| BLOOM-1.1B | 47.6 | 27.3 | 58.6 | 67.0 | 42.4 | 42.2 | 36.6 | 53.8 | 46.9 |
|
120 |
+
| TinyLlama-1.1B | 59.2 | 37.1 | 58.1 | 72.9 | 43.9 | 59.1 | 44.7 | 58.8 | 54.2 |
|
121 |
+
| **MobileLLM-1B** | 63.0 | 39.0 | 66.7 | 74.4 | 45.0 | 61.4 | 46.8 | 62.3 | **57.3** |
|
122 |
+
|
123 |
+
## MobileLLM-1.5B
|
124 |
+
|
125 |
+
| model | boolq | piqa | siqa | hellaswag | winogrande | arc_easy | arc_challenge | obqa | avg. |
|
126 |
+
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
|
127 |
+
| GPT-neo-1.3B | 51.3 | 33.0 | 61.8 | 70.9 | 43.7 | 48.6 | 41.2 | 54.5 | 50.6 |
|
128 |
+
| OPT-1.3B | 54.4 | 31.7 | 58.4 | 71.5 | 44.7 | 53.7 | 44.6 | 59.1 | 52.3 |
|
129 |
+
| BLOOM-1.7B | 50.9 | 31.2 | 61.7 | 70.0 | 43.2 | 47.2 | 36.2 | 56.1 | 49.6 |
|
130 |
+
| Qwen1.5-1.8B | 61.1 | 36.5 | 68.3 | 74.1 | 47.2 | 60.4 | 42.9 | 61.2 | 56.5 |
|
131 |
+
| GPT-neo-2.7B | 55.8 | 34.3 | 62.4 | 72.9 | 43.6 | 55.6 | 40.0 | 57.9 | 52.8 |
|
132 |
+
| OPT-2.7B | 56.6 | 34.6 | 61.8 | 74.5 | 45.6 | 60.2 | 48.2 | 59.6 | 55.1 |
|
133 |
+
| Pythia-2.8B | 59.4 | 38.9 | 66.1 | 73.8 | 44.5 | 59.6 | 45.0 | 59.4 | 55.8 |
|
134 |
+
| BLOOM-3B | 55.1 | 33.6 | 62.1 | 70.5 | 43.2 | 53.9 | 41.6 | 58.2 | 52.3 |
|
135 |
+
| **MobileLLM-1.5B** | 67.5 | 40.9 | 65.7 | 74.8 | 46.4 | 64.5 | 50.5 | 64.7 | **59.4** |
|
136 |
+
|
137 |
+
# Citation
|
138 |
+
|
139 |
+
If you find our code useful for your research, please consider citing:
|
140 |
+
|
141 |
+
@article{liu2024mobilellm,
|
142 |
+
title={MobileLLM: Optimizing Sub-billion Parameter Language Models for On-Device Use Cases},
|
143 |
+
author={Liu, Zechun and Zhao, Changsheng and Iandola, Forrest and Lai, Chen and Tian, Yuandong and Fedorov, Igor and Xiong, Yunyang and Chang, Ernie and Shi, Yangyang and Krishnamoorthi, Raghuraman and others},
|
144 |
+
journal={arXiv preprint arXiv:2402.14905},
|
145 |
+
year={2024}
|
146 |
+
}
|
147 |
+
|
148 |
+
# License
|
149 |
+
|
150 |
+
MobileLLM is CC-BY-NC 4.0 licensed as of now.
|