nielsr HF staff commited on
Commit
597f362
1 Parent(s): f99b37f

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +86 -0
README.md ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - object-detection
5
+ - vision
6
+ datasets:
7
+ - coco
8
+ widget:
9
+ - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/savanna.jpg
10
+ example_title: Savanna
11
+ - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/football-match.jpg
12
+ example_title: Football Match
13
+ - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/airport.jpg
14
+ example_title: Airport
15
+ ---
16
+
17
+ # Deformable DETR model trained using the Detic method on LVIS
18
+
19
+ Deformable DEtection TRansformer (DETR), trained on LVIS (including 1203 classes). It was introduced in the paper [Detecting Twenty-thousand Classes using Image-level Supervision](https://arxiv.org/abs/2201.02605) by Zhou et al. and first released in [this repository](https://github.com/facebookresearch/Detic).
20
+
21
+ This model corresponds to the "Detic_DeformDETR_R50_4x" checkpoint released in the original repository.
22
+
23
+ Disclaimer: The team releasing Detic did not write a model card for this model so this model card has been written by the Hugging Face team.
24
+
25
+ ## Model description
26
+
27
+ The DETR model is an encoder-decoder transformer with a convolutional backbone. Two heads are added on top of the decoder outputs in order to perform object detection: a linear layer for the class labels and a MLP (multi-layer perceptron) for the bounding boxes. The model uses so-called object queries to detect objects in an image. Each object query looks for a particular object in the image. For COCO, the number of object queries is set to 100.
28
+
29
+ The model is trained using a "bipartite matching loss": one compares the predicted classes + bounding boxes of each of the N = 100 object queries to the ground truth annotations, padded up to the same length N (so if an image only contains 4 objects, 96 annotations will just have a "no object" as class and "no bounding box" as bounding box). The Hungarian matching algorithm is used to create an optimal one-to-one mapping between each of the N queries and each of the N annotations. Next, standard cross-entropy (for the classes) and a linear combination of the L1 and generalized IoU loss (for the bounding boxes) are used to optimize the parameters of the model.
30
+
31
+ ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/deformable_detr_architecture.png)
32
+
33
+ ## Intended uses & limitations
34
+
35
+ You can use the raw model for object detection. See the [model hub](https://huggingface.co/models?search=sensetime/deformable-detr) to look for all available Deformable DETR models.
36
+
37
+ ### How to use
38
+
39
+ Here is how to use this model:
40
+
41
+ ```python
42
+ from transformers import AutoImageProcessor, DeformableDetrForObjectDetection
43
+ import torch
44
+ from PIL import Image
45
+ import requests
46
+
47
+ url = "http://images.cocodataset.org/val2017/000000039769.jpg"
48
+ image = Image.open(requests.get(url, stream=True).raw)
49
+
50
+ processor = AutoImageProcessor.from_pretrained("facebook/deformable-detr-detic")
51
+ model = DeformableDetrForObjectDetection.from_pretrained("facebook/deformable-detr-detic")
52
+
53
+ inputs = processor(images=image, return_tensors="pt")
54
+ outputs = model(**inputs)
55
+
56
+ # convert outputs (bounding boxes and class logits) to COCO API
57
+ # let's only keep detections with score > 0.7
58
+ target_sizes = torch.tensor([image.size[::-1]])
59
+ results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.7)[0]
60
+
61
+ for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
62
+ box = [round(i, 2) for i in box.tolist()]
63
+ print(
64
+ f"Detected {model.config.id2label[label.item()]} with confidence "
65
+ f"{round(score.item(), 3)} at location {box}"
66
+ )
67
+ ```
68
+
69
+ ## Evaluation results
70
+
71
+ This model achieves 32.5 box mAP and 26.2 mAP (rare classes) on LVIS.
72
+
73
+ ### BibTeX entry and citation info
74
+
75
+ ```bibtex
76
+ @misc{https://doi.org/10.48550/arxiv.2010.04159,
77
+ doi = {10.48550/ARXIV.2010.04159},
78
+ url = {https://arxiv.org/abs/2010.04159},
79
+ author = {Zhu, Xizhou and Su, Weijie and Lu, Lewei and Li, Bin and Wang, Xiaogang and Dai, Jifeng},
80
+ keywords = {Computer Vision and Pattern Recognition (cs.CV), FOS: Computer and information sciences, FOS: Computer and information sciences},
81
+ title = {Deformable DETR: Deformable Transformers for End-to-End Object Detection},
82
+ publisher = {arXiv},
83
+ year = {2020},
84
+ copyright = {arXiv.org perpetual, non-exclusive license}
85
+ }
86
+ ```