ylacombe commited on
Commit
b498358
1 Parent(s): cb90476

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +6 -6
README.md CHANGED
@@ -34,8 +34,8 @@ First, load the processor and a checkpoint of the model:
34
  ```python
35
  from transformers import AutoProcessor, SeamlessM4TModel
36
 
37
- processor = AutoProcessor.from_pretrained("ylacombe/hf-seamless-m4t-medium")
38
- model = SeamlessM4TModel.from_pretrained("ylacombe/hf-seamless-m4t-medium")
39
  ```
40
 
41
  You can seamlessly use this model on text or on audio, to generated either translated text or translated audio.
@@ -89,17 +89,17 @@ For example, you can replace the previous snippet with the model dedicated to th
89
 
90
  ```python
91
  from transformers import SeamlessM4TForSpeechToSpeech
92
- model = SeamlessM4TForSpeechToSpeech.from_pretrained("ylacombe/hf-seamless-m4t-medium")
93
  ```
94
 
95
 
96
  ### Text
97
 
98
- Similarly, you can generate translated text from text or audio files, this time using the dedicated models.
99
 
100
  ```python
101
  from transformers import SeamlessM4TForSpeechToText
102
- model = SeamlessM4TForSpeechToText.from_pretrained("ylacombe/hf-seamless-m4t-medium")
103
  audio_sample = dataset["audio"][0]["array"]
104
  inputs = processor(audios = audio_sample, return_tensors="pt")
105
 
@@ -111,7 +111,7 @@ And from text:
111
 
112
  ```python
113
  from transformers import SeamlessM4TForTextToText
114
- model = SeamlessM4TForTextToText.from_pretrained("ylacombe/hf-seamless-m4t-medium")
115
  inputs = processor(text = "Hello, my dog is cute", src_lang="eng", return_tensors="pt")
116
 
117
  output_tokens = model.generate(**inputs, tgt_lang="fra")
 
34
  ```python
35
  from transformers import AutoProcessor, SeamlessM4TModel
36
 
37
+ processor = AutoProcessor.from_pretrained("ylacombe/hf-seamless-m4t-large")
38
+ model = SeamlessM4TModel.from_pretrained("ylacombe/hf-seamless-m4t-large")
39
  ```
40
 
41
  You can seamlessly use this model on text or on audio, to generated either translated text or translated audio.
 
89
 
90
  ```python
91
  from transformers import SeamlessM4TForSpeechToSpeech
92
+ model = SeamlessM4TForSpeechToSpeech.from_pretrained("ylacombe/hf-seamless-m4t-large")
93
  ```
94
 
95
 
96
  ### Text
97
 
98
+ Similarly, you can generate translated text from text or audio files. This time, let's use the dedicated models as example.
99
 
100
  ```python
101
  from transformers import SeamlessM4TForSpeechToText
102
+ model = SeamlessM4TForSpeechToText.from_pretrained("ylacombe/hf-seamless-m4t-large")
103
  audio_sample = dataset["audio"][0]["array"]
104
  inputs = processor(audios = audio_sample, return_tensors="pt")
105
 
 
111
 
112
  ```python
113
  from transformers import SeamlessM4TForTextToText
114
+ model = SeamlessM4TForTextToText.from_pretrained("ylacombe/hf-seamless-m4t-large")
115
  inputs = processor(text = "Hello, my dog is cute", src_lang="eng", return_tensors="pt")
116
 
117
  output_tokens = model.generate(**inputs, tgt_lang="fra")