Transformers
PyTorch
rag
Inference Endpoints
julien-c HF staff commited on
Commit
7c7ae51
1 Parent(s): 78e9df7

Migrate model card from transformers-repo

Browse files

Read announcement at https://discuss.huggingface.co/t/announcement-all-model-cards-will-be-migrated-to-hf-co-model-repos/2755
Original file history: https://github.com/huggingface/transformers/commits/master/model_cards/facebook/rag-sequence-base/README.md

Files changed (1) hide show
  1. README.md +54 -0
README.md ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ thumbnail: https://huggingface.co/front/thumbnails/facebook.png
4
+ ---
5
+ ## RAG
6
+
7
+ This is a non-finetuned version of the RAG-Sequence model of the the paper [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/pdf/2005.11401.pdf)
8
+ by Patrick Lewis, Ethan Perez, Aleksandara Piktus et al.
9
+
10
+ Rag consits of a *question encoder*, *retriever* and a *generator*. The retriever should be a `RagRetriever` instance. The *question encoder* can be any model that can be loaded with `AutoModel` and the *generator* can be any model that can be loaded with `AutoModelForSeq2SeqLM`.
11
+
12
+ This model is a non-finetuned RAG-Sequence model and was created as follows:
13
+
14
+ ```python
15
+ from transformers import RagTokenizer, RagRetriever, RagSequenceForGeneration, AutoTokenizer
16
+
17
+ model = RagSequenceForGeneration.from_pretrained_question_encoder_generator("facebook/dpr-question_encoder-single-nq-base", "facebook/bart-large")
18
+
19
+ question_encoder_tokenizer = AutoTokenizer.from_pretrained("facebook/dpr-question_encoder-single-nq-base")
20
+ generator_tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large")
21
+
22
+ tokenizer = RagTokenizer(question_encoder_tokenizer, generator_tokenizer)
23
+ model.config.use_dummy_dataset = True
24
+ model.config.index_name = "exact"
25
+ retriever = RagRetriever(model.config, question_encoder_tokenizer, generator_tokenizer)
26
+
27
+ model.save_pretrained("./")
28
+ tokenizer.save_pretrained("./")
29
+ retriever.save_pretrained("./")
30
+ ```
31
+
32
+ Note that the model is *uncased* so that all capital input letters are converted to lower-case.
33
+
34
+ ## Usage:
35
+
36
+ *Note*: the model uses the *dummy* retriever as a default. Better results are obtained by using the full retriever,
37
+ by setting `config.index_name="legacy"` and `config.use_dummy_dataset=False`.
38
+ The model can be fine-tuned as follows:
39
+
40
+ ```python
41
+ from transformers import RagTokenizer, RagRetriever, RagTokenForGeneration
42
+
43
+ tokenizer = RagTokenizer.from_pretrained("facebook/rag-sequence-base")
44
+ retriever = RagRetriever.from_pretrained("facebook/rag-sequence-base")
45
+ model = RagTokenForGeneration.from_pretrained("facebook/rag-sequence-base", retriever=retriever)
46
+
47
+ input_dict = tokenizer.prepare_seq2seq_batch("who holds the record in 100m freestyle", "michael phelps", return_tensors="pt")
48
+
49
+ outputs = model(input_dict["input_ids"], labels=input_dict["labels"])
50
+
51
+ loss = outputs.loss
52
+
53
+ # train on loss
54
+ ```