File size: 1,336 Bytes
65cbec0
 
 
 
 
 
 
 
 
 
 
0292bb5
65cbec0
9528629
65cbec0
0292bb5
65cbec0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
578e13f
 
65cbec0
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
---
license: apache-2.0
tags:
- vision





---

## RegNetY 10B

This gigantic model is a scale up [RegNetY](https://arxiv.org/abs/2003.13678) model trained on one billion random images.

Disclaimer: The team releasing RegNetModel did not write a model card for this model so this model card has been written by the Hugging Face team.

## Intended uses & limitations

You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=regnet) to look for
fine-tuned versions on a task that interests you.

### How to use

Here is how to use this model:

```python
>>> from transformers import AutoFeatureExtractor, RegNetModel
>>> import torch
>>> from datasets import load_dataset

>>> dataset = load_dataset("huggingface/cats-image")
>>> image = dataset["test"]["image"][0]

>>> feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/regnet-y-10b-seer")
>>> model = RegNetModel.from_pretrained("facebook/regnet-y-10b-seer")

>>> inputs = feature_extractor(image, return_tensors="pt")

>>> with torch.no_grad():
...     outputs = model(**inputs)

>>> last_hidden_states = outputs.last_hidden_state
>>> list(last_hidden_states.shape)
[1, 1088, 7, 7]
```



For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/regnet).