|
from typing import Dict, List, Any |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
from peft import PeftModel |
|
import torch |
|
|
|
class EndpointHandler(): |
|
def __init__(self, path=""): |
|
|
|
self.base_model_name = "google/gemma-1.1-2b-it" |
|
self.adapter_model_name = "factshlab/autotrain-pjkul-jliyi" |
|
|
|
|
|
base_model = AutoModelForCausalLM.from_pretrained( |
|
self.base_model_name, |
|
low_cpu_mem_usage=True, |
|
torch_dtype=torch.float16, |
|
device_map="auto", |
|
) |
|
|
|
|
|
self.model = PeftModel.from_pretrained(base_model, self.adapter_model_name) |
|
self.model = self.model.merge_and_unload() |
|
|
|
|
|
self.tokenizer = AutoTokenizer.from_pretrained(self.base_model_name, trust_remote_code=True) |
|
self.tokenizer.pad_token = self.tokenizer.eos_token |
|
self.tokenizer.padding_side = "right" |
|
|
|
|
|
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
self.model.to(self.device) |
|
|
|
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: |
|
""" |
|
data args: |
|
inputs (:obj:`str`): The input text for the model. |
|
Return: |
|
A :obj:`list` | `dict`: The prediction from the model, serialized and returned. |
|
""" |
|
|
|
inputs = data.pop("inputs", data) |
|
|
|
|
|
inputs = self.tokenizer(inputs, return_tensors="pt", padding=True).to(self.device) |
|
|
|
|
|
outputs = self.model.generate(**inputs, max_new_tokens=50) |
|
|
|
|
|
prediction = self.tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
|
|
|
return [{"generated_text": prediction}] |
|
|