Upload README.md
Browse files
README.md
CHANGED
@@ -1,5 +1,4 @@
|
|
1 |
---
|
2 |
-
library_name: sentence-transformers
|
3 |
model-index:
|
4 |
- name: XYZ-embedding-zh
|
5 |
results:
|
@@ -11,11 +10,11 @@ model-index:
|
|
11 |
type: C-MTEB/CMedQAv1-reranking
|
12 |
metrics:
|
13 |
- type: map
|
14 |
-
value: 89.
|
15 |
- type: mrr
|
16 |
-
value: 91.
|
17 |
- type: main_score
|
18 |
-
value: 89.
|
19 |
task:
|
20 |
type: Reranking
|
21 |
- dataset:
|
@@ -26,11 +25,11 @@ model-index:
|
|
26 |
type: C-MTEB/CMedQAv2-reranking
|
27 |
metrics:
|
28 |
- type: map
|
29 |
-
value: 89.
|
30 |
- type: mrr
|
31 |
-
value: 91.
|
32 |
- type: main_score
|
33 |
-
value: 89.
|
34 |
task:
|
35 |
type: Reranking
|
36 |
- dataset:
|
@@ -41,67 +40,67 @@ model-index:
|
|
41 |
type: C-MTEB/CmedqaRetrieval
|
42 |
metrics:
|
43 |
- type: map_at_1
|
44 |
-
value: 27.
|
45 |
- type: map_at_10
|
46 |
-
value: 41.
|
47 |
- type: map_at_100
|
48 |
-
value: 43.
|
49 |
- type: map_at_1000
|
50 |
-
value: 43.
|
51 |
- type: map_at_3
|
52 |
-
value:
|
53 |
- type: map_at_5
|
54 |
-
value: 39.
|
55 |
- type: mrr_at_1
|
56 |
-
value: 42.
|
57 |
- type: mrr_at_10
|
58 |
-
value: 50.
|
59 |
- type: mrr_at_100
|
60 |
-
value: 51.
|
61 |
- type: mrr_at_1000
|
62 |
-
value: 51.
|
63 |
- type: mrr_at_3
|
64 |
-
value:
|
65 |
- type: mrr_at_5
|
66 |
-
value: 49.
|
67 |
- type: ndcg_at_1
|
68 |
-
value: 42.
|
69 |
- type: ndcg_at_10
|
70 |
-
value:
|
71 |
- type: ndcg_at_100
|
72 |
-
value:
|
73 |
- type: ndcg_at_1000
|
74 |
-
value: 56.
|
75 |
- type: ndcg_at_3
|
76 |
-
value:
|
77 |
- type: ndcg_at_5
|
78 |
-
value:
|
79 |
- type: precision_at_1
|
80 |
-
value: 42.
|
81 |
- type: precision_at_10
|
82 |
-
value: 10.
|
83 |
- type: precision_at_100
|
84 |
-
value: 1.
|
85 |
- type: precision_at_1000
|
86 |
value: 0.183
|
87 |
- type: precision_at_3
|
88 |
-
value: 24.
|
89 |
- type: precision_at_5
|
90 |
-
value: 17.
|
91 |
- type: recall_at_1
|
92 |
-
value: 27.
|
93 |
- type: recall_at_10
|
94 |
-
value:
|
95 |
- type: recall_at_100
|
96 |
-
value: 86.
|
97 |
- type: recall_at_1000
|
98 |
-
value: 98.
|
99 |
- type: recall_at_3
|
100 |
-
value:
|
101 |
- type: recall_at_5
|
102 |
-
value: 49.
|
103 |
- type: main_score
|
104 |
-
value:
|
105 |
task:
|
106 |
type: Retrieval
|
107 |
- dataset:
|
@@ -112,67 +111,67 @@ model-index:
|
|
112 |
type: C-MTEB/CovidRetrieval
|
113 |
metrics:
|
114 |
- type: map_at_1
|
115 |
-
value:
|
116 |
- type: map_at_10
|
117 |
-
value:
|
118 |
- type: map_at_100
|
119 |
-
value:
|
120 |
- type: map_at_1000
|
121 |
-
value:
|
122 |
- type: map_at_3
|
123 |
-
value:
|
124 |
- type: map_at_5
|
125 |
-
value:
|
126 |
- type: mrr_at_1
|
127 |
-
value:
|
128 |
- type: mrr_at_10
|
129 |
-
value:
|
130 |
- type: mrr_at_100
|
131 |
-
value:
|
132 |
- type: mrr_at_1000
|
133 |
-
value:
|
134 |
- type: mrr_at_3
|
135 |
-
value:
|
136 |
- type: mrr_at_5
|
137 |
-
value:
|
138 |
- type: ndcg_at_1
|
139 |
-
value:
|
140 |
- type: ndcg_at_10
|
141 |
-
value:
|
142 |
- type: ndcg_at_100
|
143 |
-
value:
|
144 |
- type: ndcg_at_1000
|
145 |
-
value:
|
146 |
- type: ndcg_at_3
|
147 |
-
value:
|
148 |
- type: ndcg_at_5
|
149 |
-
value:
|
150 |
- type: precision_at_1
|
151 |
-
value:
|
152 |
- type: precision_at_10
|
153 |
-
value:
|
154 |
- type: precision_at_100
|
155 |
-
value: 1.
|
156 |
- type: precision_at_1000
|
157 |
value: 0.101
|
158 |
- type: precision_at_3
|
159 |
-
value:
|
160 |
- type: precision_at_5
|
161 |
-
value: 19.
|
162 |
- type: recall_at_1
|
163 |
-
value:
|
164 |
- type: recall_at_10
|
165 |
-
value:
|
166 |
- type: recall_at_100
|
167 |
-
value: 99.
|
168 |
- type: recall_at_1000
|
169 |
value: 100.0
|
170 |
- type: recall_at_3
|
171 |
-
value:
|
172 |
- type: recall_at_5
|
173 |
-
value:
|
174 |
- type: main_score
|
175 |
-
value:
|
176 |
task:
|
177 |
type: Retrieval
|
178 |
- dataset:
|
@@ -183,67 +182,67 @@ model-index:
|
|
183 |
type: C-MTEB/DuRetrieval
|
184 |
metrics:
|
185 |
- type: map_at_1
|
186 |
-
value: 27.
|
187 |
- type: map_at_10
|
188 |
-
value:
|
189 |
- type: map_at_100
|
190 |
-
value: 87.
|
191 |
- type: map_at_1000
|
192 |
-
value: 87.
|
193 |
- type: map_at_3
|
194 |
-
value: 59.
|
195 |
- type: map_at_5
|
196 |
-
value:
|
197 |
- type: mrr_at_1
|
198 |
value: 93.65
|
199 |
- type: mrr_at_10
|
200 |
-
value: 95.
|
201 |
- type: mrr_at_100
|
202 |
-
value: 95.
|
203 |
- type: mrr_at_1000
|
204 |
-
value: 95.
|
205 |
- type: mrr_at_3
|
206 |
-
value: 95.
|
207 |
- type: mrr_at_5
|
208 |
-
value: 95.
|
209 |
- type: ndcg_at_1
|
210 |
value: 93.65
|
211 |
- type: ndcg_at_10
|
212 |
-
value:
|
213 |
- type: ndcg_at_100
|
214 |
-
value:
|
215 |
- type: ndcg_at_1000
|
216 |
-
value: 93.
|
217 |
- type: ndcg_at_3
|
218 |
-
value: 90.
|
219 |
- type: ndcg_at_5
|
220 |
-
value: 89.
|
221 |
- type: precision_at_1
|
222 |
value: 93.65
|
223 |
- type: precision_at_10
|
224 |
-
value:
|
225 |
- type: precision_at_100
|
226 |
-
value: 4.
|
227 |
- type: precision_at_1000
|
228 |
-
value: 0.
|
229 |
- type: precision_at_3
|
230 |
-
value:
|
231 |
- type: precision_at_5
|
232 |
-
value: 68.
|
233 |
- type: recall_at_1
|
234 |
-
value: 27.
|
235 |
- type: recall_at_10
|
236 |
-
value: 91.
|
237 |
- type: recall_at_100
|
238 |
-
value: 98.
|
239 |
- type: recall_at_1000
|
240 |
-
value: 99.
|
241 |
- type: recall_at_3
|
242 |
-
value:
|
243 |
- type: recall_at_5
|
244 |
-
value: 78.
|
245 |
- type: main_score
|
246 |
-
value:
|
247 |
task:
|
248 |
type: Retrieval
|
249 |
- dataset:
|
@@ -254,67 +253,67 @@ model-index:
|
|
254 |
type: C-MTEB/EcomRetrieval
|
255 |
metrics:
|
256 |
- type: map_at_1
|
257 |
-
value: 54.
|
258 |
- type: map_at_10
|
259 |
-
value:
|
260 |
- type: map_at_100
|
261 |
-
value: 65.
|
262 |
- type: map_at_1000
|
263 |
-
value: 65.
|
264 |
- type: map_at_3
|
265 |
-
value: 62.
|
266 |
- type: map_at_5
|
267 |
-
value:
|
268 |
- type: mrr_at_1
|
269 |
-
value: 54.
|
270 |
- type: mrr_at_10
|
271 |
-
value:
|
272 |
- type: mrr_at_100
|
273 |
-
value: 65.
|
274 |
- type: mrr_at_1000
|
275 |
-
value: 65.
|
276 |
- type: mrr_at_3
|
277 |
-
value: 62.
|
278 |
- type: mrr_at_5
|
279 |
-
value:
|
280 |
- type: ndcg_at_1
|
281 |
-
value: 54.
|
282 |
- type: ndcg_at_10
|
283 |
-
value:
|
284 |
- type: ndcg_at_100
|
285 |
-
value: 72.
|
286 |
- type: ndcg_at_1000
|
287 |
-
value: 72.
|
288 |
- type: ndcg_at_3
|
289 |
-
value:
|
290 |
- type: ndcg_at_5
|
291 |
-
value: 67.
|
292 |
- type: precision_at_1
|
293 |
-
value: 54.
|
294 |
- type: precision_at_10
|
295 |
-
value: 8.
|
296 |
- type: precision_at_100
|
297 |
-
value: 0.
|
298 |
- type: precision_at_1000
|
299 |
-
value: 0.
|
300 |
- type: precision_at_3
|
301 |
-
value:
|
302 |
- type: precision_at_5
|
303 |
-
value: 15.
|
304 |
- type: recall_at_1
|
305 |
-
value: 54.
|
306 |
- type: recall_at_10
|
307 |
-
value:
|
308 |
- type: recall_at_100
|
309 |
-
value: 96.
|
310 |
- type: recall_at_1000
|
311 |
-
value: 98.
|
312 |
- type: recall_at_3
|
313 |
-
value:
|
314 |
- type: recall_at_5
|
315 |
-
value: 79.
|
316 |
- type: main_score
|
317 |
-
value:
|
318 |
task:
|
319 |
type: Retrieval
|
320 |
- dataset:
|
@@ -325,11 +324,11 @@ model-index:
|
|
325 |
type: C-MTEB/Mmarco-reranking
|
326 |
metrics:
|
327 |
- type: map
|
328 |
-
value:
|
329 |
- type: mrr
|
330 |
-
value:
|
331 |
- type: main_score
|
332 |
-
value:
|
333 |
task:
|
334 |
type: Reranking
|
335 |
- dataset:
|
@@ -340,67 +339,67 @@ model-index:
|
|
340 |
type: C-MTEB/MMarcoRetrieval
|
341 |
metrics:
|
342 |
- type: map_at_1
|
343 |
-
value: 69.
|
344 |
- type: map_at_10
|
345 |
-
value: 78.
|
346 |
- type: map_at_100
|
347 |
-
value: 79.
|
348 |
- type: map_at_1000
|
349 |
-
value: 79.
|
350 |
- type: map_at_3
|
351 |
-
value: 76.
|
352 |
- type: map_at_5
|
353 |
-
value: 78.
|
354 |
- type: mrr_at_1
|
355 |
-
value: 71.
|
356 |
- type: mrr_at_10
|
357 |
-
value: 79.
|
358 |
- type: mrr_at_100
|
359 |
-
value: 79.
|
360 |
- type: mrr_at_1000
|
361 |
-
value: 79.
|
362 |
- type: mrr_at_3
|
363 |
-
value: 77.
|
364 |
- type: mrr_at_5
|
365 |
-
value: 78.
|
366 |
- type: ndcg_at_1
|
367 |
-
value: 71.
|
368 |
- type: ndcg_at_10
|
369 |
-
value: 82.
|
370 |
- type: ndcg_at_100
|
371 |
-
value: 83.
|
372 |
- type: ndcg_at_1000
|
373 |
-
value: 83.
|
374 |
- type: ndcg_at_3
|
375 |
-
value: 79.
|
376 |
- type: ndcg_at_5
|
377 |
-
value: 81.
|
378 |
- type: precision_at_1
|
379 |
-
value: 71.
|
380 |
- type: precision_at_10
|
381 |
-
value: 9.
|
382 |
- type: precision_at_100
|
383 |
-
value: 1.
|
384 |
- type: precision_at_1000
|
385 |
value: 0.106
|
386 |
- type: precision_at_3
|
387 |
-
value: 29.
|
388 |
- type: precision_at_5
|
389 |
-
value: 18.
|
390 |
- type: recall_at_1
|
391 |
-
value: 69.
|
392 |
- type: recall_at_10
|
393 |
-
value: 93.
|
394 |
- type: recall_at_100
|
395 |
-
value: 98.
|
396 |
- type: recall_at_1000
|
397 |
-
value: 99.
|
398 |
- type: recall_at_3
|
399 |
-
value: 84.
|
400 |
- type: recall_at_5
|
401 |
-
value: 89.
|
402 |
- type: main_score
|
403 |
-
value: 82.
|
404 |
task:
|
405 |
type: Retrieval
|
406 |
- dataset:
|
@@ -413,65 +412,65 @@ model-index:
|
|
413 |
- type: map_at_1
|
414 |
value: 57.8
|
415 |
- type: map_at_10
|
416 |
-
value: 64.
|
417 |
- type: map_at_100
|
418 |
-
value:
|
419 |
- type: map_at_1000
|
420 |
-
value:
|
421 |
- type: map_at_3
|
422 |
-
value: 62.
|
423 |
- type: map_at_5
|
424 |
-
value:
|
425 |
- type: mrr_at_1
|
426 |
value: 58.099999999999994
|
427 |
- type: mrr_at_10
|
428 |
-
value: 64.
|
429 |
- type: mrr_at_100
|
430 |
-
value:
|
431 |
- type: mrr_at_1000
|
432 |
-
value:
|
433 |
- type: mrr_at_3
|
434 |
-
value:
|
435 |
- type: mrr_at_5
|
436 |
-
value:
|
437 |
- type: ndcg_at_1
|
438 |
value: 57.8
|
439 |
- type: ndcg_at_10
|
440 |
-
value:
|
441 |
- type: ndcg_at_100
|
442 |
-
value:
|
443 |
- type: ndcg_at_1000
|
444 |
-
value: 71.
|
445 |
- type: ndcg_at_3
|
446 |
-
value: 64.
|
447 |
- type: ndcg_at_5
|
448 |
-
value:
|
449 |
- type: precision_at_1
|
450 |
value: 57.8
|
451 |
- type: precision_at_10
|
452 |
-
value: 7.
|
453 |
- type: precision_at_100
|
454 |
-
value: 0.
|
455 |
- type: precision_at_1000
|
456 |
value: 0.099
|
457 |
- type: precision_at_3
|
458 |
-
value:
|
459 |
- type: precision_at_5
|
460 |
-
value: 14.
|
461 |
- type: recall_at_1
|
462 |
value: 57.8
|
463 |
- type: recall_at_10
|
464 |
-
value:
|
465 |
- type: recall_at_100
|
466 |
-
value:
|
467 |
- type: recall_at_1000
|
468 |
-
value:
|
469 |
- type: recall_at_3
|
470 |
-
value:
|
471 |
- type: recall_at_5
|
472 |
-
value:
|
473 |
- type: main_score
|
474 |
-
value:
|
475 |
task:
|
476 |
type: Retrieval
|
477 |
- dataset:
|
@@ -482,11 +481,11 @@ model-index:
|
|
482 |
type: C-MTEB/T2Reranking
|
483 |
metrics:
|
484 |
- type: map
|
485 |
-
value: 69.
|
486 |
- type: mrr
|
487 |
-
value: 79.
|
488 |
- type: main_score
|
489 |
-
value: 69.
|
490 |
task:
|
491 |
type: Reranking
|
492 |
- dataset:
|
@@ -497,67 +496,67 @@ model-index:
|
|
497 |
type: C-MTEB/T2Retrieval
|
498 |
metrics:
|
499 |
- type: map_at_1
|
500 |
-
value: 28.
|
501 |
- type: map_at_10
|
502 |
-
value: 78.
|
503 |
- type: map_at_100
|
504 |
-
value: 82.
|
505 |
- type: map_at_1000
|
506 |
-
value: 82.
|
507 |
- type: map_at_3
|
508 |
-
value: 55.
|
509 |
- type: map_at_5
|
510 |
-
value: 67.
|
511 |
- type: mrr_at_1
|
512 |
-
value:
|
513 |
- type: mrr_at_10
|
514 |
-
value: 93.
|
515 |
- type: mrr_at_100
|
516 |
-
value: 93.
|
517 |
- type: mrr_at_1000
|
518 |
-
value: 93.
|
519 |
- type: mrr_at_3
|
520 |
-
value: 92.
|
521 |
- type: mrr_at_5
|
522 |
-
value: 93.
|
523 |
- type: ndcg_at_1
|
524 |
-
value:
|
525 |
- type: ndcg_at_10
|
526 |
-
value: 85.
|
527 |
- type: ndcg_at_100
|
528 |
-
value: 89.
|
529 |
- type: ndcg_at_1000
|
530 |
-
value: 89.
|
531 |
- type: ndcg_at_3
|
532 |
-
value: 87.
|
533 |
- type: ndcg_at_5
|
534 |
-
value: 85.
|
535 |
- type: precision_at_1
|
536 |
-
value:
|
537 |
- type: precision_at_10
|
538 |
-
value: 42.
|
539 |
- type: precision_at_100
|
540 |
-
value: 5.
|
541 |
- type: precision_at_1000
|
542 |
value: 0.516
|
543 |
- type: precision_at_3
|
544 |
-
value: 76.
|
545 |
- type: precision_at_5
|
546 |
-
value: 63.
|
547 |
- type: recall_at_1
|
548 |
-
value: 28.
|
549 |
- type: recall_at_10
|
550 |
-
value: 84.
|
551 |
- type: recall_at_100
|
552 |
-
value: 95.
|
553 |
- type: recall_at_1000
|
554 |
-
value: 98.
|
555 |
- type: recall_at_3
|
556 |
-
value: 57.
|
557 |
- type: recall_at_5
|
558 |
-
value: 71.
|
559 |
- type: main_score
|
560 |
-
value: 85.
|
561 |
task:
|
562 |
type: Retrieval
|
563 |
- dataset:
|
@@ -568,121 +567,99 @@ model-index:
|
|
568 |
type: C-MTEB/VideoRetrieval
|
569 |
metrics:
|
570 |
- type: map_at_1
|
571 |
-
value:
|
572 |
- type: map_at_10
|
573 |
-
value:
|
574 |
- type: map_at_100
|
575 |
-
value:
|
576 |
- type: map_at_1000
|
577 |
-
value:
|
578 |
- type: map_at_3
|
579 |
-
value:
|
580 |
- type: map_at_5
|
581 |
-
value:
|
582 |
- type: mrr_at_1
|
583 |
-
value:
|
584 |
- type: mrr_at_10
|
585 |
-
value:
|
586 |
- type: mrr_at_100
|
587 |
-
value:
|
588 |
- type: mrr_at_1000
|
589 |
-
value:
|
590 |
- type: mrr_at_3
|
591 |
-
value:
|
592 |
- type: mrr_at_5
|
593 |
-
value:
|
594 |
- type: ndcg_at_1
|
595 |
-
value:
|
596 |
- type: ndcg_at_10
|
597 |
-
value: 80.
|
598 |
- type: ndcg_at_100
|
599 |
-
value:
|
600 |
- type: ndcg_at_1000
|
601 |
-
value:
|
602 |
- type: ndcg_at_3
|
603 |
-
value:
|
604 |
- type: ndcg_at_5
|
605 |
-
value:
|
606 |
- type: precision_at_1
|
607 |
-
value:
|
608 |
- type: precision_at_10
|
609 |
-
value: 9.
|
610 |
- type: precision_at_100
|
611 |
-
value: 0.
|
612 |
- type: precision_at_1000
|
613 |
value: 0.1
|
614 |
- type: precision_at_3
|
615 |
-
value:
|
616 |
- type: precision_at_5
|
617 |
-
value: 17.
|
618 |
- type: recall_at_1
|
619 |
-
value:
|
620 |
- type: recall_at_10
|
621 |
-
value:
|
622 |
- type: recall_at_100
|
623 |
-
value: 99.
|
624 |
- type: recall_at_1000
|
625 |
-
value: 99.
|
626 |
- type: recall_at_3
|
627 |
-
value:
|
628 |
- type: recall_at_5
|
629 |
-
value:
|
630 |
- type: main_score
|
631 |
-
value: 80.
|
632 |
task:
|
633 |
type: Retrieval
|
634 |
-
pipeline_tag: sentence-similarity
|
635 |
tags:
|
636 |
-
- sentence-transformers
|
637 |
-
- feature-extraction
|
638 |
-
- sentence-similarity
|
639 |
- mteb
|
640 |
---
|
641 |
-
-
|
642 |
-
|
643 |
-
# XYZ-embedding-zh
|
644 |
|
645 |
-
|
646 |
|
647 |
-
|
648 |
|
649 |
-
|
650 |
-
|
651 |
-
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
652 |
-
|
653 |
-
```
|
654 |
pip install -U sentence-transformers
|
655 |
```
|
656 |
-
|
657 |
-
Then you can use the model like this:
|
658 |
-
|
659 |
```python
|
660 |
from sentence_transformers import SentenceTransformer
|
661 |
-
sentences = ["This is an example sentence", "Each sentence is converted"]
|
662 |
|
663 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
664 |
embeddings = model.encode(sentences)
|
665 |
-
print(embeddings)
|
666 |
-
|
667 |
-
|
668 |
-
|
669 |
-
|
670 |
-
## Evaluation Results
|
671 |
-
|
672 |
-
<!--- Describe how your model was evaluated -->
|
673 |
-
|
674 |
-
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
|
675 |
|
676 |
-
|
677 |
-
|
678 |
-
|
679 |
-
|
680 |
-
SentenceTransformer(
|
681 |
-
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
682 |
-
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
683 |
-
(2): Dense({'in_features': 1024, 'out_features': 1792, 'bias': True, 'activation_function': 'torch.nn.modules.linear.Identity'})
|
684 |
-
)
|
685 |
```
|
686 |
-
|
687 |
-
## Citing & Authors
|
688 |
-
|
|
|
1 |
---
|
|
|
2 |
model-index:
|
3 |
- name: XYZ-embedding-zh
|
4 |
results:
|
|
|
10 |
type: C-MTEB/CMedQAv1-reranking
|
11 |
metrics:
|
12 |
- type: map
|
13 |
+
value: 89.9766367822762
|
14 |
- type: mrr
|
15 |
+
value: 91.88896825396824
|
16 |
- type: main_score
|
17 |
+
value: 89.9766367822762
|
18 |
task:
|
19 |
type: Reranking
|
20 |
- dataset:
|
|
|
25 |
type: C-MTEB/CMedQAv2-reranking
|
26 |
metrics:
|
27 |
- type: map
|
28 |
+
value: 89.04628340075982
|
29 |
- type: mrr
|
30 |
+
value: 91.21702380952381
|
31 |
- type: main_score
|
32 |
+
value: 89.04628340075982
|
33 |
task:
|
34 |
type: Reranking
|
35 |
- dataset:
|
|
|
40 |
type: C-MTEB/CmedqaRetrieval
|
41 |
metrics:
|
42 |
- type: map_at_1
|
43 |
+
value: 27.796
|
44 |
- type: map_at_10
|
45 |
+
value: 41.498000000000005
|
46 |
- type: map_at_100
|
47 |
+
value: 43.332
|
48 |
- type: map_at_1000
|
49 |
+
value: 43.429
|
50 |
- type: map_at_3
|
51 |
+
value: 37.172
|
52 |
- type: map_at_5
|
53 |
+
value: 39.617000000000004
|
54 |
- type: mrr_at_1
|
55 |
+
value: 42.111
|
56 |
- type: mrr_at_10
|
57 |
+
value: 50.726000000000006
|
58 |
- type: mrr_at_100
|
59 |
+
value: 51.632
|
60 |
- type: mrr_at_1000
|
61 |
+
value: 51.67
|
62 |
- type: mrr_at_3
|
63 |
+
value: 48.429
|
64 |
- type: mrr_at_5
|
65 |
+
value: 49.662
|
66 |
- type: ndcg_at_1
|
67 |
+
value: 42.111
|
68 |
- type: ndcg_at_10
|
69 |
+
value: 48.294
|
70 |
- type: ndcg_at_100
|
71 |
+
value: 55.135999999999996
|
72 |
- type: ndcg_at_1000
|
73 |
+
value: 56.818000000000005
|
74 |
- type: ndcg_at_3
|
75 |
+
value: 43.185
|
76 |
- type: ndcg_at_5
|
77 |
+
value: 45.266
|
78 |
- type: precision_at_1
|
79 |
+
value: 42.111
|
80 |
- type: precision_at_10
|
81 |
+
value: 10.635
|
82 |
- type: precision_at_100
|
83 |
+
value: 1.619
|
84 |
- type: precision_at_1000
|
85 |
value: 0.183
|
86 |
- type: precision_at_3
|
87 |
+
value: 24.539
|
88 |
- type: precision_at_5
|
89 |
+
value: 17.644000000000002
|
90 |
- type: recall_at_1
|
91 |
+
value: 27.796
|
92 |
- type: recall_at_10
|
93 |
+
value: 59.034
|
94 |
- type: recall_at_100
|
95 |
+
value: 86.991
|
96 |
- type: recall_at_1000
|
97 |
+
value: 98.304
|
98 |
- type: recall_at_3
|
99 |
+
value: 43.356
|
100 |
- type: recall_at_5
|
101 |
+
value: 49.998
|
102 |
- type: main_score
|
103 |
+
value: 48.294
|
104 |
task:
|
105 |
type: Retrieval
|
106 |
- dataset:
|
|
|
111 |
type: C-MTEB/CovidRetrieval
|
112 |
metrics:
|
113 |
- type: map_at_1
|
114 |
+
value: 80.479
|
115 |
- type: map_at_10
|
116 |
+
value: 87.984
|
117 |
- type: map_at_100
|
118 |
+
value: 88.036
|
119 |
- type: map_at_1000
|
120 |
+
value: 88.03699999999999
|
121 |
- type: map_at_3
|
122 |
+
value: 87.083
|
123 |
- type: map_at_5
|
124 |
+
value: 87.694
|
125 |
- type: mrr_at_1
|
126 |
+
value: 80.927
|
127 |
- type: mrr_at_10
|
128 |
+
value: 88.046
|
129 |
- type: mrr_at_100
|
130 |
+
value: 88.099
|
131 |
- type: mrr_at_1000
|
132 |
+
value: 88.1
|
133 |
- type: mrr_at_3
|
134 |
+
value: 87.215
|
135 |
- type: mrr_at_5
|
136 |
+
value: 87.768
|
137 |
- type: ndcg_at_1
|
138 |
+
value: 80.927
|
139 |
- type: ndcg_at_10
|
140 |
+
value: 90.756
|
141 |
- type: ndcg_at_100
|
142 |
+
value: 90.96
|
143 |
- type: ndcg_at_1000
|
144 |
+
value: 90.975
|
145 |
- type: ndcg_at_3
|
146 |
+
value: 89.032
|
147 |
- type: ndcg_at_5
|
148 |
+
value: 90.106
|
149 |
- type: precision_at_1
|
150 |
+
value: 80.927
|
151 |
- type: precision_at_10
|
152 |
+
value: 10.011000000000001
|
153 |
- type: precision_at_100
|
154 |
+
value: 1.009
|
155 |
- type: precision_at_1000
|
156 |
value: 0.101
|
157 |
- type: precision_at_3
|
158 |
+
value: 31.752999999999997
|
159 |
- type: precision_at_5
|
160 |
+
value: 19.6
|
161 |
- type: recall_at_1
|
162 |
+
value: 80.479
|
163 |
- type: recall_at_10
|
164 |
+
value: 99.05199999999999
|
165 |
- type: recall_at_100
|
166 |
+
value: 99.895
|
167 |
- type: recall_at_1000
|
168 |
value: 100.0
|
169 |
- type: recall_at_3
|
170 |
+
value: 94.494
|
171 |
- type: recall_at_5
|
172 |
+
value: 97.102
|
173 |
- type: main_score
|
174 |
+
value: 90.756
|
175 |
task:
|
176 |
type: Retrieval
|
177 |
- dataset:
|
|
|
182 |
type: C-MTEB/DuRetrieval
|
183 |
metrics:
|
184 |
- type: map_at_1
|
185 |
+
value: 27.853
|
186 |
- type: map_at_10
|
187 |
+
value: 85.13199999999999
|
188 |
- type: map_at_100
|
189 |
+
value: 87.688
|
190 |
- type: map_at_1000
|
191 |
+
value: 87.712
|
192 |
- type: map_at_3
|
193 |
+
value: 59.705
|
194 |
- type: map_at_5
|
195 |
+
value: 75.139
|
196 |
- type: mrr_at_1
|
197 |
value: 93.65
|
198 |
- type: mrr_at_10
|
199 |
+
value: 95.682
|
200 |
- type: mrr_at_100
|
201 |
+
value: 95.722
|
202 |
- type: mrr_at_1000
|
203 |
+
value: 95.724
|
204 |
- type: mrr_at_3
|
205 |
+
value: 95.467
|
206 |
- type: mrr_at_5
|
207 |
+
value: 95.612
|
208 |
- type: ndcg_at_1
|
209 |
value: 93.65
|
210 |
- type: ndcg_at_10
|
211 |
+
value: 91.155
|
212 |
- type: ndcg_at_100
|
213 |
+
value: 93.183
|
214 |
- type: ndcg_at_1000
|
215 |
+
value: 93.38499999999999
|
216 |
- type: ndcg_at_3
|
217 |
+
value: 90.648
|
218 |
- type: ndcg_at_5
|
219 |
+
value: 89.47699999999999
|
220 |
- type: precision_at_1
|
221 |
value: 93.65
|
222 |
- type: precision_at_10
|
223 |
+
value: 43.11
|
224 |
- type: precision_at_100
|
225 |
+
value: 4.854
|
226 |
- type: precision_at_1000
|
227 |
+
value: 0.49100000000000005
|
228 |
- type: precision_at_3
|
229 |
+
value: 81.11699999999999
|
230 |
- type: precision_at_5
|
231 |
+
value: 68.28999999999999
|
232 |
- type: recall_at_1
|
233 |
+
value: 27.853
|
234 |
- type: recall_at_10
|
235 |
+
value: 91.678
|
236 |
- type: recall_at_100
|
237 |
+
value: 98.553
|
238 |
- type: recall_at_1000
|
239 |
+
value: 99.553
|
240 |
- type: recall_at_3
|
241 |
+
value: 61.381
|
242 |
- type: recall_at_5
|
243 |
+
value: 78.605
|
244 |
- type: main_score
|
245 |
+
value: 91.155
|
246 |
task:
|
247 |
type: Retrieval
|
248 |
- dataset:
|
|
|
253 |
type: C-MTEB/EcomRetrieval
|
254 |
metrics:
|
255 |
- type: map_at_1
|
256 |
+
value: 54.50000000000001
|
257 |
- type: map_at_10
|
258 |
+
value: 65.167
|
259 |
- type: map_at_100
|
260 |
+
value: 65.664
|
261 |
- type: map_at_1000
|
262 |
+
value: 65.67399999999999
|
263 |
- type: map_at_3
|
264 |
+
value: 62.633
|
265 |
- type: map_at_5
|
266 |
+
value: 64.208
|
267 |
- type: mrr_at_1
|
268 |
+
value: 54.50000000000001
|
269 |
- type: mrr_at_10
|
270 |
+
value: 65.167
|
271 |
- type: mrr_at_100
|
272 |
+
value: 65.664
|
273 |
- type: mrr_at_1000
|
274 |
+
value: 65.67399999999999
|
275 |
- type: mrr_at_3
|
276 |
+
value: 62.633
|
277 |
- type: mrr_at_5
|
278 |
+
value: 64.208
|
279 |
- type: ndcg_at_1
|
280 |
+
value: 54.50000000000001
|
281 |
- type: ndcg_at_10
|
282 |
+
value: 70.294
|
283 |
- type: ndcg_at_100
|
284 |
+
value: 72.564
|
285 |
- type: ndcg_at_1000
|
286 |
+
value: 72.841
|
287 |
- type: ndcg_at_3
|
288 |
+
value: 65.128
|
289 |
- type: ndcg_at_5
|
290 |
+
value: 67.96799999999999
|
291 |
- type: precision_at_1
|
292 |
+
value: 54.50000000000001
|
293 |
- type: precision_at_10
|
294 |
+
value: 8.64
|
295 |
- type: precision_at_100
|
296 |
+
value: 0.967
|
297 |
- type: precision_at_1000
|
298 |
+
value: 0.099
|
299 |
- type: precision_at_3
|
300 |
+
value: 24.099999999999998
|
301 |
- type: precision_at_5
|
302 |
+
value: 15.840000000000002
|
303 |
- type: recall_at_1
|
304 |
+
value: 54.50000000000001
|
305 |
- type: recall_at_10
|
306 |
+
value: 86.4
|
307 |
- type: recall_at_100
|
308 |
+
value: 96.7
|
309 |
- type: recall_at_1000
|
310 |
+
value: 98.9
|
311 |
- type: recall_at_3
|
312 |
+
value: 72.3
|
313 |
- type: recall_at_5
|
314 |
+
value: 79.2
|
315 |
- type: main_score
|
316 |
+
value: 70.294
|
317 |
task:
|
318 |
type: Retrieval
|
319 |
- dataset:
|
|
|
324 |
type: C-MTEB/Mmarco-reranking
|
325 |
metrics:
|
326 |
- type: map
|
327 |
+
value: 37.68251937316638
|
328 |
- type: mrr
|
329 |
+
value: 36.61746031746032
|
330 |
- type: main_score
|
331 |
+
value: 37.68251937316638
|
332 |
task:
|
333 |
type: Reranking
|
334 |
- dataset:
|
|
|
339 |
type: C-MTEB/MMarcoRetrieval
|
340 |
metrics:
|
341 |
- type: map_at_1
|
342 |
+
value: 69.401
|
343 |
- type: map_at_10
|
344 |
+
value: 78.8
|
345 |
- type: map_at_100
|
346 |
+
value: 79.077
|
347 |
- type: map_at_1000
|
348 |
+
value: 79.081
|
349 |
- type: map_at_3
|
350 |
+
value: 76.97
|
351 |
- type: map_at_5
|
352 |
+
value: 78.185
|
353 |
- type: mrr_at_1
|
354 |
+
value: 71.719
|
355 |
- type: mrr_at_10
|
356 |
+
value: 79.327
|
357 |
- type: mrr_at_100
|
358 |
+
value: 79.56400000000001
|
359 |
- type: mrr_at_1000
|
360 |
+
value: 79.56800000000001
|
361 |
- type: mrr_at_3
|
362 |
+
value: 77.736
|
363 |
- type: mrr_at_5
|
364 |
+
value: 78.782
|
365 |
- type: ndcg_at_1
|
366 |
+
value: 71.719
|
367 |
- type: ndcg_at_10
|
368 |
+
value: 82.505
|
369 |
- type: ndcg_at_100
|
370 |
+
value: 83.673
|
371 |
- type: ndcg_at_1000
|
372 |
+
value: 83.786
|
373 |
- type: ndcg_at_3
|
374 |
+
value: 79.07600000000001
|
375 |
- type: ndcg_at_5
|
376 |
+
value: 81.122
|
377 |
- type: precision_at_1
|
378 |
+
value: 71.719
|
379 |
- type: precision_at_10
|
380 |
+
value: 9.924
|
381 |
- type: precision_at_100
|
382 |
+
value: 1.049
|
383 |
- type: precision_at_1000
|
384 |
value: 0.106
|
385 |
- type: precision_at_3
|
386 |
+
value: 29.742
|
387 |
- type: precision_at_5
|
388 |
+
value: 18.937
|
389 |
- type: recall_at_1
|
390 |
+
value: 69.401
|
391 |
- type: recall_at_10
|
392 |
+
value: 93.349
|
393 |
- type: recall_at_100
|
394 |
+
value: 98.492
|
395 |
- type: recall_at_1000
|
396 |
+
value: 99.384
|
397 |
- type: recall_at_3
|
398 |
+
value: 84.385
|
399 |
- type: recall_at_5
|
400 |
+
value: 89.237
|
401 |
- type: main_score
|
402 |
+
value: 82.505
|
403 |
task:
|
404 |
type: Retrieval
|
405 |
- dataset:
|
|
|
412 |
- type: map_at_1
|
413 |
value: 57.8
|
414 |
- type: map_at_10
|
415 |
+
value: 64.696
|
416 |
- type: map_at_100
|
417 |
+
value: 65.294
|
418 |
- type: map_at_1000
|
419 |
+
value: 65.328
|
420 |
- type: map_at_3
|
421 |
+
value: 62.949999999999996
|
422 |
- type: map_at_5
|
423 |
+
value: 64.095
|
424 |
- type: mrr_at_1
|
425 |
value: 58.099999999999994
|
426 |
- type: mrr_at_10
|
427 |
+
value: 64.85
|
428 |
- type: mrr_at_100
|
429 |
+
value: 65.448
|
430 |
- type: mrr_at_1000
|
431 |
+
value: 65.482
|
432 |
- type: mrr_at_3
|
433 |
+
value: 63.1
|
434 |
- type: mrr_at_5
|
435 |
+
value: 64.23
|
436 |
- type: ndcg_at_1
|
437 |
value: 57.8
|
438 |
- type: ndcg_at_10
|
439 |
+
value: 68.041
|
440 |
- type: ndcg_at_100
|
441 |
+
value: 71.074
|
442 |
- type: ndcg_at_1000
|
443 |
+
value: 71.919
|
444 |
- type: ndcg_at_3
|
445 |
+
value: 64.584
|
446 |
- type: ndcg_at_5
|
447 |
+
value: 66.625
|
448 |
- type: precision_at_1
|
449 |
value: 57.8
|
450 |
- type: precision_at_10
|
451 |
+
value: 7.85
|
452 |
- type: precision_at_100
|
453 |
+
value: 0.9289999999999999
|
454 |
- type: precision_at_1000
|
455 |
value: 0.099
|
456 |
- type: precision_at_3
|
457 |
+
value: 23.1
|
458 |
- type: precision_at_5
|
459 |
+
value: 14.84
|
460 |
- type: recall_at_1
|
461 |
value: 57.8
|
462 |
- type: recall_at_10
|
463 |
+
value: 78.5
|
464 |
- type: recall_at_100
|
465 |
+
value: 92.9
|
466 |
- type: recall_at_1000
|
467 |
+
value: 99.4
|
468 |
- type: recall_at_3
|
469 |
+
value: 69.3
|
470 |
- type: recall_at_5
|
471 |
+
value: 74.2
|
472 |
- type: main_score
|
473 |
+
value: 68.041
|
474 |
task:
|
475 |
type: Retrieval
|
476 |
- dataset:
|
|
|
481 |
type: C-MTEB/T2Reranking
|
482 |
metrics:
|
483 |
- type: map
|
484 |
+
value: 69.13287570713865
|
485 |
- type: mrr
|
486 |
+
value: 79.95326487625066
|
487 |
- type: main_score
|
488 |
+
value: 69.13287570713865
|
489 |
task:
|
490 |
type: Reranking
|
491 |
- dataset:
|
|
|
496 |
type: C-MTEB/T2Retrieval
|
497 |
metrics:
|
498 |
- type: map_at_1
|
499 |
+
value: 28.041
|
500 |
- type: map_at_10
|
501 |
+
value: 78.509
|
502 |
- type: map_at_100
|
503 |
+
value: 82.083
|
504 |
- type: map_at_1000
|
505 |
+
value: 82.143
|
506 |
- type: map_at_3
|
507 |
+
value: 55.345
|
508 |
- type: map_at_5
|
509 |
+
value: 67.899
|
510 |
- type: mrr_at_1
|
511 |
+
value: 90.86
|
512 |
- type: mrr_at_10
|
513 |
+
value: 93.31
|
514 |
- type: mrr_at_100
|
515 |
+
value: 93.388
|
516 |
- type: mrr_at_1000
|
517 |
+
value: 93.391
|
518 |
- type: mrr_at_3
|
519 |
+
value: 92.92200000000001
|
520 |
- type: mrr_at_5
|
521 |
+
value: 93.167
|
522 |
- type: ndcg_at_1
|
523 |
+
value: 90.86
|
524 |
- type: ndcg_at_10
|
525 |
+
value: 85.875
|
526 |
- type: ndcg_at_100
|
527 |
+
value: 89.269
|
528 |
- type: ndcg_at_1000
|
529 |
+
value: 89.827
|
530 |
- type: ndcg_at_3
|
531 |
+
value: 87.254
|
532 |
- type: ndcg_at_5
|
533 |
+
value: 85.855
|
534 |
- type: precision_at_1
|
535 |
+
value: 90.86
|
536 |
- type: precision_at_10
|
537 |
+
value: 42.488
|
538 |
- type: precision_at_100
|
539 |
+
value: 5.029
|
540 |
- type: precision_at_1000
|
541 |
value: 0.516
|
542 |
- type: precision_at_3
|
543 |
+
value: 76.172
|
544 |
- type: precision_at_5
|
545 |
+
value: 63.759
|
546 |
- type: recall_at_1
|
547 |
+
value: 28.041
|
548 |
- type: recall_at_10
|
549 |
+
value: 84.829
|
550 |
- type: recall_at_100
|
551 |
+
value: 95.89999999999999
|
552 |
- type: recall_at_1000
|
553 |
+
value: 98.665
|
554 |
- type: recall_at_3
|
555 |
+
value: 57.009
|
556 |
- type: recall_at_5
|
557 |
+
value: 71.188
|
558 |
- type: main_score
|
559 |
+
value: 85.875
|
560 |
task:
|
561 |
type: Retrieval
|
562 |
- dataset:
|
|
|
567 |
type: C-MTEB/VideoRetrieval
|
568 |
metrics:
|
569 |
- type: map_at_1
|
570 |
+
value: 67.30000000000001
|
571 |
- type: map_at_10
|
572 |
+
value: 76.819
|
573 |
- type: map_at_100
|
574 |
+
value: 77.141
|
575 |
- type: map_at_1000
|
576 |
+
value: 77.142
|
577 |
- type: map_at_3
|
578 |
+
value: 75.233
|
579 |
- type: map_at_5
|
580 |
+
value: 76.163
|
581 |
- type: mrr_at_1
|
582 |
+
value: 67.30000000000001
|
583 |
- type: mrr_at_10
|
584 |
+
value: 76.819
|
585 |
- type: mrr_at_100
|
586 |
+
value: 77.141
|
587 |
- type: mrr_at_1000
|
588 |
+
value: 77.142
|
589 |
- type: mrr_at_3
|
590 |
+
value: 75.233
|
591 |
- type: mrr_at_5
|
592 |
+
value: 76.163
|
593 |
- type: ndcg_at_1
|
594 |
+
value: 67.30000000000001
|
595 |
- type: ndcg_at_10
|
596 |
+
value: 80.93599999999999
|
597 |
- type: ndcg_at_100
|
598 |
+
value: 82.311
|
599 |
- type: ndcg_at_1000
|
600 |
+
value: 82.349
|
601 |
- type: ndcg_at_3
|
602 |
+
value: 77.724
|
603 |
- type: ndcg_at_5
|
604 |
+
value: 79.406
|
605 |
- type: precision_at_1
|
606 |
+
value: 67.30000000000001
|
607 |
- type: precision_at_10
|
608 |
+
value: 9.36
|
609 |
- type: precision_at_100
|
610 |
+
value: 0.996
|
611 |
- type: precision_at_1000
|
612 |
value: 0.1
|
613 |
- type: precision_at_3
|
614 |
+
value: 28.299999999999997
|
615 |
- type: precision_at_5
|
616 |
+
value: 17.8
|
617 |
- type: recall_at_1
|
618 |
+
value: 67.30000000000001
|
619 |
- type: recall_at_10
|
620 |
+
value: 93.60000000000001
|
621 |
- type: recall_at_100
|
622 |
+
value: 99.6
|
623 |
- type: recall_at_1000
|
624 |
+
value: 99.9
|
625 |
- type: recall_at_3
|
626 |
+
value: 84.89999999999999
|
627 |
- type: recall_at_5
|
628 |
+
value: 89.0
|
629 |
- type: main_score
|
630 |
+
value: 80.93599999999999
|
631 |
task:
|
632 |
type: Retrieval
|
|
|
633 |
tags:
|
|
|
|
|
|
|
634 |
- mteb
|
635 |
---
|
636 |
+
XYZ-embedding-zh
|
|
|
|
|
637 |
|
638 |
+
## Usage (Sentence Transformers)
|
639 |
|
640 |
+
First install the Sentence Transformers library:
|
641 |
|
642 |
+
```bash
|
|
|
|
|
|
|
|
|
643 |
pip install -U sentence-transformers
|
644 |
```
|
645 |
+
Then you can load this model and run inference.
|
|
|
|
|
646 |
```python
|
647 |
from sentence_transformers import SentenceTransformer
|
|
|
648 |
|
649 |
+
# Download from the 🤗 Hub
|
650 |
+
model = SentenceTransformer("fangxq/XYZ-embedding-zh")
|
651 |
+
# Run inference
|
652 |
+
sentences = [
|
653 |
+
'The weather is lovely today.',
|
654 |
+
"It's so sunny outside!",
|
655 |
+
'He drove to the stadium.',
|
656 |
+
]
|
657 |
embeddings = model.encode(sentences)
|
658 |
+
print(embeddings.shape)
|
659 |
+
# [3, 1792]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
660 |
|
661 |
+
# Get the similarity scores for the embeddings
|
662 |
+
similarities = model.similarity(embeddings, embeddings)
|
663 |
+
print(similarities.shape)
|
664 |
+
# [3, 3]
|
|
|
|
|
|
|
|
|
|
|
665 |
```
|
|
|
|
|
|