--- tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: "6) Implement advocacy strategies with heads of government ministries, departments\ \ \n\nand institutions, national, district and local leaders on solutions to major\ \ nutrition \nproblems." - text: 'The Government plans to continue its interventions aimed at increasing access to drinking water by: - in rural areas, constructing an additional 2 500 water points (mainly boreholes) and rehabilitating an extra 2 000 existing water points. - in urban and pre-urban areas, rehabilitating and constructing water supply infrastructure in the various urban towns. The Government will also, in terms of sanitation, continue to promote community-based approaches and construct facilities. Objective: ensure adequate access to sanitation facilities and increase access to clean and safe drinking water from 64% (2014) to 67% of the population in urban areas and from 83% (2014) to 85% in urban and pre-urban areas. ' - text: "Specific objective\ni) to improve safe water supply services to the people\ \ in the rural communities\nii) to improve the water supply service levels in\ \ rural area to enable rural the population in the \nproject areas to increase\ \ their economic income through incorporating back yard or mini \nirrigation system." - text: "Social security contributions \n\nLabor \nMarkets \n\nActivation measures\ \ \n\n• During the period of state of emergency, all training activities \nrecognized\ \ by the Ministry of Labor and Social Protection can be \ndelivered online." - text: "Training infrastructure will be adapted to accommodate \nnew\tprogrammes." metrics: - accuracy pipeline_tag: text-classification library_name: setfit inference: false base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 --- # SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) as the Sentence Transformer embedding model. A OneVsRestClassifier instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) - **Classification head:** a OneVsRestClassifier instance - **Maximum Sequence Length:** 128 tokens ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("faodl/model_g20_multilabel") # Run inference preds = model("Training infrastructure will be adapted to accommodate new programmes.") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:-----| | Word count | 1 | 48.9866 | 1181 | ### Training Hyperparameters - batch_size: (16, 16) - num_epochs: (1, 1) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 50 - body_learning_rate: (2e-05, 2e-05) - head_learning_rate: 2e-05 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - l2_weight: 0.01 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.0002 | 1 | 0.2348 | - | | 0.0119 | 50 | 0.1747 | - | | 0.0237 | 100 | 0.153 | - | | 0.0356 | 150 | 0.1314 | - | | 0.0475 | 200 | 0.1263 | - | | 0.0593 | 250 | 0.1168 | - | | 0.0712 | 300 | 0.116 | - | | 0.0831 | 350 | 0.098 | - | | 0.0949 | 400 | 0.1085 | - | | 0.1068 | 450 | 0.0975 | - | | 0.1187 | 500 | 0.094 | - | | 0.1305 | 550 | 0.082 | - | | 0.1424 | 600 | 0.0856 | - | | 0.1543 | 650 | 0.0838 | - | | 0.1662 | 700 | 0.0762 | - | | 0.1780 | 750 | 0.0722 | - | | 0.1899 | 800 | 0.0722 | - | | 0.2018 | 850 | 0.0634 | - | | 0.2136 | 900 | 0.0584 | - | | 0.2255 | 950 | 0.0664 | - | | 0.2374 | 1000 | 0.0688 | - | | 0.2492 | 1050 | 0.0629 | - | | 0.2611 | 1100 | 0.0579 | - | | 0.2730 | 1150 | 0.0652 | - | | 0.2848 | 1200 | 0.0573 | - | | 0.2967 | 1250 | 0.0584 | - | | 0.3086 | 1300 | 0.0558 | - | | 0.3204 | 1350 | 0.0586 | - | | 0.3323 | 1400 | 0.0574 | - | | 0.3442 | 1450 | 0.0444 | - | | 0.3560 | 1500 | 0.0462 | - | | 0.3679 | 1550 | 0.0488 | - | | 0.3798 | 1600 | 0.0505 | - | | 0.3916 | 1650 | 0.0529 | - | | 0.4035 | 1700 | 0.0487 | - | | 0.4154 | 1750 | 0.0459 | - | | 0.4272 | 1800 | 0.0531 | - | | 0.4391 | 1850 | 0.0448 | - | | 0.4510 | 1900 | 0.0382 | - | | 0.4629 | 1950 | 0.0457 | - | | 0.4747 | 2000 | 0.0493 | - | | 0.4866 | 2050 | 0.0488 | - | | 0.4985 | 2100 | 0.049 | - | | 0.5103 | 2150 | 0.0495 | - | | 0.5222 | 2200 | 0.0402 | - | | 0.5341 | 2250 | 0.0493 | - | | 0.5459 | 2300 | 0.0496 | - | | 0.5578 | 2350 | 0.0438 | - | | 0.5697 | 2400 | 0.0361 | - | | 0.5815 | 2450 | 0.0428 | - | | 0.5934 | 2500 | 0.0419 | - | | 0.6053 | 2550 | 0.0416 | - | | 0.6171 | 2600 | 0.0338 | - | | 0.6290 | 2650 | 0.0397 | - | | 0.6409 | 2700 | 0.0385 | - | | 0.6527 | 2750 | 0.0285 | - | | 0.6646 | 2800 | 0.0461 | - | | 0.6765 | 2850 | 0.0341 | - | | 0.6883 | 2900 | 0.0379 | - | | 0.7002 | 2950 | 0.0435 | - | | 0.7121 | 3000 | 0.0341 | - | | 0.7239 | 3050 | 0.0395 | - | | 0.7358 | 3100 | 0.0424 | - | | 0.7477 | 3150 | 0.0415 | - | | 0.7596 | 3200 | 0.0422 | - | | 0.7714 | 3250 | 0.0402 | - | | 0.7833 | 3300 | 0.0309 | - | | 0.7952 | 3350 | 0.0379 | - | | 0.8070 | 3400 | 0.039 | - | | 0.8189 | 3450 | 0.0427 | - | | 0.8308 | 3500 | 0.0331 | - | | 0.8426 | 3550 | 0.0457 | - | | 0.8545 | 3600 | 0.0306 | - | | 0.8664 | 3650 | 0.034 | - | | 0.8782 | 3700 | 0.0354 | - | | 0.8901 | 3750 | 0.0393 | - | | 0.9020 | 3800 | 0.036 | - | | 0.9138 | 3850 | 0.0339 | - | | 0.9257 | 3900 | 0.0332 | - | | 0.9376 | 3950 | 0.0274 | - | | 0.9494 | 4000 | 0.0372 | - | | 0.9613 | 4050 | 0.0319 | - | | 0.9732 | 4100 | 0.0339 | - | | 0.9850 | 4150 | 0.0349 | - | | 0.9969 | 4200 | 0.0383 | - | ### Framework Versions - Python: 3.11.13 - SetFit: 1.1.2 - Sentence Transformers: 4.1.0 - Transformers: 4.52.4 - PyTorch: 2.6.0+cu124 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```