Push model using huggingface_hub.
Browse files- .gitattributes +2 -0
- 1_Pooling/config.json +10 -0
- README.md +770 -0
- config.json +25 -0
- config_sentence_transformers.json +10 -0
- config_setfit.json +4 -0
- model.safetensors +3 -0
- model_head.pkl +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +51 -0
- tokenizer.json +3 -0
- tokenizer_config.json +65 -0
- unigram.json +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
37 |
+
unigram.json filter=lfs diff=lfs merge=lfs -text
|
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 384,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,770 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- setfit
|
4 |
+
- sentence-transformers
|
5 |
+
- text-classification
|
6 |
+
- generated_from_setfit_trainer
|
7 |
+
widget:
|
8 |
+
- text: Government-led initiatives have introduced tailored insurance products that
|
9 |
+
mitigate the financial risks faced by smallholder farmers exposed to climate-induced
|
10 |
+
hazards such as droughts and floods.
|
11 |
+
- text: "National Food and Nutrition Strategic Plan 2011-2015\n\n53\n\n\n\n5.10.7\
|
12 |
+
\ Resource allocation and generation \n\nThe resources required for monitoring\
|
13 |
+
\ and evaluation of nutrition intervention should \nnormally be built into the\
|
14 |
+
\ cost of the intervention programmes."
|
15 |
+
- text: 'COVID-19: The Development Program for Drinking Water Supply and Sanitation
|
16 |
+
Systems of the Kyrgyz Republic until 2026 was approved.
|
17 |
+
|
18 |
+
|
19 |
+
The Program is aimed at increasing the provision of drinking water of standard
|
20 |
+
quality, improving the health and quality of life of the population of the republic,
|
21 |
+
reducing the harmful effects on the environment through the construction, reconstruction,
|
22 |
+
and modernization of drinking water supply and sanitation systems.'
|
23 |
+
- text: "Objectives of this project are \nto develop socio-economic infrastructure\
|
24 |
+
\ in the rural sector, expand road \ntransportation network, conduct rural employment\
|
25 |
+
\ activities, and build \n\n\n\n 227\n\nlocal level’s institutional capacity."
|
26 |
+
- text: "Housing and Community Amenities \n \n\n133."
|
27 |
+
metrics:
|
28 |
+
- accuracy
|
29 |
+
pipeline_tag: text-classification
|
30 |
+
library_name: setfit
|
31 |
+
inference: false
|
32 |
+
base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
|
33 |
+
---
|
34 |
+
|
35 |
+
# SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
|
36 |
+
|
37 |
+
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) as the Sentence Transformer embedding model. A OneVsRestClassifier instance is used for classification.
|
38 |
+
|
39 |
+
The model has been trained using an efficient few-shot learning technique that involves:
|
40 |
+
|
41 |
+
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
42 |
+
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
43 |
+
|
44 |
+
## Model Details
|
45 |
+
|
46 |
+
### Model Description
|
47 |
+
- **Model Type:** SetFit
|
48 |
+
- **Sentence Transformer body:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2)
|
49 |
+
- **Classification head:** a OneVsRestClassifier instance
|
50 |
+
- **Maximum Sequence Length:** 128 tokens
|
51 |
+
<!-- - **Number of Classes:** Unknown -->
|
52 |
+
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
53 |
+
<!-- - **Language:** Unknown -->
|
54 |
+
<!-- - **License:** Unknown -->
|
55 |
+
|
56 |
+
### Model Sources
|
57 |
+
|
58 |
+
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
|
59 |
+
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
60 |
+
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
61 |
+
|
62 |
+
## Uses
|
63 |
+
|
64 |
+
### Direct Use for Inference
|
65 |
+
|
66 |
+
First install the SetFit library:
|
67 |
+
|
68 |
+
```bash
|
69 |
+
pip install setfit
|
70 |
+
```
|
71 |
+
|
72 |
+
Then you can load this model and run inference.
|
73 |
+
|
74 |
+
```python
|
75 |
+
from setfit import SetFitModel
|
76 |
+
|
77 |
+
# Download from the 🤗 Hub
|
78 |
+
model = SetFitModel.from_pretrained("faodl/model_g20_multilabel_30sample")
|
79 |
+
# Run inference
|
80 |
+
preds = model("Housing and Community Amenities
|
81 |
+
|
82 |
+
|
83 |
+
133.")
|
84 |
+
```
|
85 |
+
|
86 |
+
<!--
|
87 |
+
### Downstream Use
|
88 |
+
|
89 |
+
*List how someone could finetune this model on their own dataset.*
|
90 |
+
-->
|
91 |
+
|
92 |
+
<!--
|
93 |
+
### Out-of-Scope Use
|
94 |
+
|
95 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
96 |
+
-->
|
97 |
+
|
98 |
+
<!--
|
99 |
+
## Bias, Risks and Limitations
|
100 |
+
|
101 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
102 |
+
-->
|
103 |
+
|
104 |
+
<!--
|
105 |
+
### Recommendations
|
106 |
+
|
107 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
108 |
+
-->
|
109 |
+
|
110 |
+
## Training Details
|
111 |
+
|
112 |
+
### Training Set Metrics
|
113 |
+
| Training set | Min | Median | Max |
|
114 |
+
|:-------------|:----|:--------|:----|
|
115 |
+
| Word count | 1 | 41.0925 | 506 |
|
116 |
+
|
117 |
+
### Training Hyperparameters
|
118 |
+
- batch_size: (8, 8)
|
119 |
+
- num_epochs: (4, 4)
|
120 |
+
- max_steps: -1
|
121 |
+
- sampling_strategy: oversampling
|
122 |
+
- num_iterations: 20
|
123 |
+
- body_learning_rate: (2e-05, 2e-05)
|
124 |
+
- head_learning_rate: 2e-05
|
125 |
+
- loss: CosineSimilarityLoss
|
126 |
+
- distance_metric: cosine_distance
|
127 |
+
- margin: 0.25
|
128 |
+
- end_to_end: False
|
129 |
+
- use_amp: False
|
130 |
+
- warmup_proportion: 0.1
|
131 |
+
- l2_weight: 0.01
|
132 |
+
- seed: 42
|
133 |
+
- eval_max_steps: -1
|
134 |
+
- load_best_model_at_end: False
|
135 |
+
|
136 |
+
### Training Results
|
137 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
138 |
+
|:------:|:-----:|:-------------:|:---------------:|
|
139 |
+
| 0.0001 | 1 | 0.2661 | - |
|
140 |
+
| 0.0068 | 50 | 0.1923 | - |
|
141 |
+
| 0.0136 | 100 | 0.1856 | - |
|
142 |
+
| 0.0204 | 150 | 0.1927 | - |
|
143 |
+
| 0.0272 | 200 | 0.1708 | - |
|
144 |
+
| 0.0340 | 250 | 0.1706 | - |
|
145 |
+
| 0.0408 | 300 | 0.156 | - |
|
146 |
+
| 0.0476 | 350 | 0.1597 | - |
|
147 |
+
| 0.0544 | 400 | 0.149 | - |
|
148 |
+
| 0.0612 | 450 | 0.1488 | - |
|
149 |
+
| 0.0680 | 500 | 0.1375 | - |
|
150 |
+
| 0.0748 | 550 | 0.1234 | - |
|
151 |
+
| 0.0816 | 600 | 0.1339 | - |
|
152 |
+
| 0.0884 | 650 | 0.126 | - |
|
153 |
+
| 0.0952 | 700 | 0.1347 | - |
|
154 |
+
| 0.1020 | 750 | 0.1323 | - |
|
155 |
+
| 0.1088 | 800 | 0.1159 | - |
|
156 |
+
| 0.1156 | 850 | 0.1236 | - |
|
157 |
+
| 0.1224 | 900 | 0.1218 | - |
|
158 |
+
| 0.1293 | 950 | 0.1323 | - |
|
159 |
+
| 0.1361 | 1000 | 0.1258 | - |
|
160 |
+
| 0.1429 | 1050 | 0.1206 | - |
|
161 |
+
| 0.1497 | 1100 | 0.1127 | - |
|
162 |
+
| 0.1565 | 1150 | 0.1211 | - |
|
163 |
+
| 0.1633 | 1200 | 0.1234 | - |
|
164 |
+
| 0.1701 | 1250 | 0.1178 | - |
|
165 |
+
| 0.1769 | 1300 | 0.1009 | - |
|
166 |
+
| 0.1837 | 1350 | 0.11 | - |
|
167 |
+
| 0.1905 | 1400 | 0.1103 | - |
|
168 |
+
| 0.1973 | 1450 | 0.1015 | - |
|
169 |
+
| 0.2041 | 1500 | 0.0926 | - |
|
170 |
+
| 0.2109 | 1550 | 0.099 | - |
|
171 |
+
| 0.2177 | 1600 | 0.1079 | - |
|
172 |
+
| 0.2245 | 1650 | 0.0979 | - |
|
173 |
+
| 0.2313 | 1700 | 0.1001 | - |
|
174 |
+
| 0.2381 | 1750 | 0.1039 | - |
|
175 |
+
| 0.2449 | 1800 | 0.0838 | - |
|
176 |
+
| 0.2517 | 1850 | 0.0941 | - |
|
177 |
+
| 0.2585 | 1900 | 0.0929 | - |
|
178 |
+
| 0.2653 | 1950 | 0.0851 | - |
|
179 |
+
| 0.2721 | 2000 | 0.0956 | - |
|
180 |
+
| 0.2789 | 2050 | 0.075 | - |
|
181 |
+
| 0.2857 | 2100 | 0.1067 | - |
|
182 |
+
| 0.2925 | 2150 | 0.0891 | - |
|
183 |
+
| 0.2993 | 2200 | 0.0939 | - |
|
184 |
+
| 0.3061 | 2250 | 0.0908 | - |
|
185 |
+
| 0.3129 | 2300 | 0.0847 | - |
|
186 |
+
| 0.3197 | 2350 | 0.0812 | - |
|
187 |
+
| 0.3265 | 2400 | 0.0918 | - |
|
188 |
+
| 0.3333 | 2450 | 0.0935 | - |
|
189 |
+
| 0.3401 | 2500 | 0.0792 | - |
|
190 |
+
| 0.3469 | 2550 | 0.0669 | - |
|
191 |
+
| 0.3537 | 2600 | 0.0883 | - |
|
192 |
+
| 0.3605 | 2650 | 0.0829 | - |
|
193 |
+
| 0.3673 | 2700 | 0.0656 | - |
|
194 |
+
| 0.3741 | 2750 | 0.0752 | - |
|
195 |
+
| 0.3810 | 2800 | 0.0825 | - |
|
196 |
+
| 0.3878 | 2850 | 0.0813 | - |
|
197 |
+
| 0.3946 | 2900 | 0.0852 | - |
|
198 |
+
| 0.4014 | 2950 | 0.0903 | - |
|
199 |
+
| 0.4082 | 3000 | 0.0902 | - |
|
200 |
+
| 0.4150 | 3050 | 0.0739 | - |
|
201 |
+
| 0.4218 | 3100 | 0.0786 | - |
|
202 |
+
| 0.4286 | 3150 | 0.083 | - |
|
203 |
+
| 0.4354 | 3200 | 0.0648 | - |
|
204 |
+
| 0.4422 | 3250 | 0.0704 | - |
|
205 |
+
| 0.4490 | 3300 | 0.0798 | - |
|
206 |
+
| 0.4558 | 3350 | 0.0651 | - |
|
207 |
+
| 0.4626 | 3400 | 0.0705 | - |
|
208 |
+
| 0.4694 | 3450 | 0.0653 | - |
|
209 |
+
| 0.4762 | 3500 | 0.0767 | - |
|
210 |
+
| 0.4830 | 3550 | 0.0747 | - |
|
211 |
+
| 0.4898 | 3600 | 0.0738 | - |
|
212 |
+
| 0.4966 | 3650 | 0.055 | - |
|
213 |
+
| 0.5034 | 3700 | 0.0741 | - |
|
214 |
+
| 0.5102 | 3750 | 0.0688 | - |
|
215 |
+
| 0.5170 | 3800 | 0.0699 | - |
|
216 |
+
| 0.5238 | 3850 | 0.0787 | - |
|
217 |
+
| 0.5306 | 3900 | 0.0673 | - |
|
218 |
+
| 0.5374 | 3950 | 0.0629 | - |
|
219 |
+
| 0.5442 | 4000 | 0.0639 | - |
|
220 |
+
| 0.5510 | 4050 | 0.0809 | - |
|
221 |
+
| 0.5578 | 4100 | 0.0694 | - |
|
222 |
+
| 0.5646 | 4150 | 0.0696 | - |
|
223 |
+
| 0.5714 | 4200 | 0.0577 | - |
|
224 |
+
| 0.5782 | 4250 | 0.0707 | - |
|
225 |
+
| 0.5850 | 4300 | 0.0542 | - |
|
226 |
+
| 0.5918 | 4350 | 0.0541 | - |
|
227 |
+
| 0.5986 | 4400 | 0.0462 | - |
|
228 |
+
| 0.6054 | 4450 | 0.0675 | - |
|
229 |
+
| 0.6122 | 4500 | 0.0561 | - |
|
230 |
+
| 0.6190 | 4550 | 0.056 | - |
|
231 |
+
| 0.6259 | 4600 | 0.0556 | - |
|
232 |
+
| 0.6327 | 4650 | 0.0552 | - |
|
233 |
+
| 0.6395 | 4700 | 0.0566 | - |
|
234 |
+
| 0.6463 | 4750 | 0.0578 | - |
|
235 |
+
| 0.6531 | 4800 | 0.0488 | - |
|
236 |
+
| 0.6599 | 4850 | 0.0419 | - |
|
237 |
+
| 0.6667 | 4900 | 0.0485 | - |
|
238 |
+
| 0.6735 | 4950 | 0.0477 | - |
|
239 |
+
| 0.6803 | 5000 | 0.0566 | - |
|
240 |
+
| 0.6871 | 5050 | 0.0571 | - |
|
241 |
+
| 0.6939 | 5100 | 0.0531 | - |
|
242 |
+
| 0.7007 | 5150 | 0.0563 | - |
|
243 |
+
| 0.7075 | 5200 | 0.0452 | - |
|
244 |
+
| 0.7143 | 5250 | 0.0459 | - |
|
245 |
+
| 0.7211 | 5300 | 0.039 | - |
|
246 |
+
| 0.7279 | 5350 | 0.0382 | - |
|
247 |
+
| 0.7347 | 5400 | 0.0679 | - |
|
248 |
+
| 0.7415 | 5450 | 0.0465 | - |
|
249 |
+
| 0.7483 | 5500 | 0.0493 | - |
|
250 |
+
| 0.7551 | 5550 | 0.0489 | - |
|
251 |
+
| 0.7619 | 5600 | 0.0443 | - |
|
252 |
+
| 0.7687 | 5650 | 0.0591 | - |
|
253 |
+
| 0.7755 | 5700 | 0.0441 | - |
|
254 |
+
| 0.7823 | 5750 | 0.0501 | - |
|
255 |
+
| 0.7891 | 5800 | 0.0497 | - |
|
256 |
+
| 0.7959 | 5850 | 0.0543 | - |
|
257 |
+
| 0.8027 | 5900 | 0.05 | - |
|
258 |
+
| 0.8095 | 5950 | 0.0449 | - |
|
259 |
+
| 0.8163 | 6000 | 0.0432 | - |
|
260 |
+
| 0.8231 | 6050 | 0.0491 | - |
|
261 |
+
| 0.8299 | 6100 | 0.0507 | - |
|
262 |
+
| 0.8367 | 6150 | 0.0405 | - |
|
263 |
+
| 0.8435 | 6200 | 0.0426 | - |
|
264 |
+
| 0.8503 | 6250 | 0.0528 | - |
|
265 |
+
| 0.8571 | 6300 | 0.0428 | - |
|
266 |
+
| 0.8639 | 6350 | 0.0534 | - |
|
267 |
+
| 0.8707 | 6400 | 0.0512 | - |
|
268 |
+
| 0.8776 | 6450 | 0.049 | - |
|
269 |
+
| 0.8844 | 6500 | 0.0386 | - |
|
270 |
+
| 0.8912 | 6550 | 0.0468 | - |
|
271 |
+
| 0.8980 | 6600 | 0.0505 | - |
|
272 |
+
| 0.9048 | 6650 | 0.0538 | - |
|
273 |
+
| 0.9116 | 6700 | 0.0484 | - |
|
274 |
+
| 0.9184 | 6750 | 0.044 | - |
|
275 |
+
| 0.9252 | 6800 | 0.0431 | - |
|
276 |
+
| 0.9320 | 6850 | 0.0456 | - |
|
277 |
+
| 0.9388 | 6900 | 0.0342 | - |
|
278 |
+
| 0.9456 | 6950 | 0.0445 | - |
|
279 |
+
| 0.9524 | 7000 | 0.0499 | - |
|
280 |
+
| 0.9592 | 7050 | 0.0589 | - |
|
281 |
+
| 0.9660 | 7100 | 0.0409 | - |
|
282 |
+
| 0.9728 | 7150 | 0.04 | - |
|
283 |
+
| 0.9796 | 7200 | 0.0443 | - |
|
284 |
+
| 0.9864 | 7250 | 0.0373 | - |
|
285 |
+
| 0.9932 | 7300 | 0.0306 | - |
|
286 |
+
| 1.0 | 7350 | 0.0303 | - |
|
287 |
+
| 1.0068 | 7400 | 0.0317 | - |
|
288 |
+
| 1.0136 | 7450 | 0.0364 | - |
|
289 |
+
| 1.0204 | 7500 | 0.0349 | - |
|
290 |
+
| 1.0272 | 7550 | 0.0388 | - |
|
291 |
+
| 1.0340 | 7600 | 0.0466 | - |
|
292 |
+
| 1.0408 | 7650 | 0.0334 | - |
|
293 |
+
| 1.0476 | 7700 | 0.0512 | - |
|
294 |
+
| 1.0544 | 7750 | 0.0413 | - |
|
295 |
+
| 1.0612 | 7800 | 0.0399 | - |
|
296 |
+
| 1.0680 | 7850 | 0.0412 | - |
|
297 |
+
| 1.0748 | 7900 | 0.0341 | - |
|
298 |
+
| 1.0816 | 7950 | 0.0395 | - |
|
299 |
+
| 1.0884 | 8000 | 0.045 | - |
|
300 |
+
| 1.0952 | 8050 | 0.0385 | - |
|
301 |
+
| 1.1020 | 8100 | 0.038 | - |
|
302 |
+
| 1.1088 | 8150 | 0.0376 | - |
|
303 |
+
| 1.1156 | 8200 | 0.0434 | - |
|
304 |
+
| 1.1224 | 8250 | 0.0323 | - |
|
305 |
+
| 1.1293 | 8300 | 0.0364 | - |
|
306 |
+
| 1.1361 | 8350 | 0.033 | - |
|
307 |
+
| 1.1429 | 8400 | 0.025 | - |
|
308 |
+
| 1.1497 | 8450 | 0.0461 | - |
|
309 |
+
| 1.1565 | 8500 | 0.033 | - |
|
310 |
+
| 1.1633 | 8550 | 0.0317 | - |
|
311 |
+
| 1.1701 | 8600 | 0.047 | - |
|
312 |
+
| 1.1769 | 8650 | 0.0344 | - |
|
313 |
+
| 1.1837 | 8700 | 0.0388 | - |
|
314 |
+
| 1.1905 | 8750 | 0.0359 | - |
|
315 |
+
| 1.1973 | 8800 | 0.0429 | - |
|
316 |
+
| 1.2041 | 8850 | 0.0355 | - |
|
317 |
+
| 1.2109 | 8900 | 0.0421 | - |
|
318 |
+
| 1.2177 | 8950 | 0.0351 | - |
|
319 |
+
| 1.2245 | 9000 | 0.0359 | - |
|
320 |
+
| 1.2313 | 9050 | 0.035 | - |
|
321 |
+
| 1.2381 | 9100 | 0.0331 | - |
|
322 |
+
| 1.2449 | 9150 | 0.0337 | - |
|
323 |
+
| 1.2517 | 9200 | 0.0376 | - |
|
324 |
+
| 1.2585 | 9250 | 0.0366 | - |
|
325 |
+
| 1.2653 | 9300 | 0.0369 | - |
|
326 |
+
| 1.2721 | 9350 | 0.0353 | - |
|
327 |
+
| 1.2789 | 9400 | 0.0439 | - |
|
328 |
+
| 1.2857 | 9450 | 0.0439 | - |
|
329 |
+
| 1.2925 | 9500 | 0.0288 | - |
|
330 |
+
| 1.2993 | 9550 | 0.0404 | - |
|
331 |
+
| 1.3061 | 9600 | 0.0355 | - |
|
332 |
+
| 1.3129 | 9650 | 0.0375 | - |
|
333 |
+
| 1.3197 | 9700 | 0.0452 | - |
|
334 |
+
| 1.3265 | 9750 | 0.0408 | - |
|
335 |
+
| 1.3333 | 9800 | 0.0369 | - |
|
336 |
+
| 1.3401 | 9850 | 0.0337 | - |
|
337 |
+
| 1.3469 | 9900 | 0.0294 | - |
|
338 |
+
| 1.3537 | 9950 | 0.0341 | - |
|
339 |
+
| 1.3605 | 10000 | 0.0356 | - |
|
340 |
+
| 1.3673 | 10050 | 0.0394 | - |
|
341 |
+
| 1.3741 | 10100 | 0.0387 | - |
|
342 |
+
| 1.3810 | 10150 | 0.0276 | - |
|
343 |
+
| 1.3878 | 10200 | 0.0345 | - |
|
344 |
+
| 1.3946 | 10250 | 0.037 | - |
|
345 |
+
| 1.4014 | 10300 | 0.0272 | - |
|
346 |
+
| 1.4082 | 10350 | 0.0341 | - |
|
347 |
+
| 1.4150 | 10400 | 0.033 | - |
|
348 |
+
| 1.4218 | 10450 | 0.0517 | - |
|
349 |
+
| 1.4286 | 10500 | 0.0297 | - |
|
350 |
+
| 1.4354 | 10550 | 0.0388 | - |
|
351 |
+
| 1.4422 | 10600 | 0.0312 | - |
|
352 |
+
| 1.4490 | 10650 | 0.0283 | - |
|
353 |
+
| 1.4558 | 10700 | 0.0287 | - |
|
354 |
+
| 1.4626 | 10750 | 0.0319 | - |
|
355 |
+
| 1.4694 | 10800 | 0.0343 | - |
|
356 |
+
| 1.4762 | 10850 | 0.033 | - |
|
357 |
+
| 1.4830 | 10900 | 0.0444 | - |
|
358 |
+
| 1.4898 | 10950 | 0.0239 | - |
|
359 |
+
| 1.4966 | 11000 | 0.0294 | - |
|
360 |
+
| 1.5034 | 11050 | 0.0313 | - |
|
361 |
+
| 1.5102 | 11100 | 0.0344 | - |
|
362 |
+
| 1.5170 | 11150 | 0.0304 | - |
|
363 |
+
| 1.5238 | 11200 | 0.0339 | - |
|
364 |
+
| 1.5306 | 11250 | 0.0342 | - |
|
365 |
+
| 1.5374 | 11300 | 0.0291 | - |
|
366 |
+
| 1.5442 | 11350 | 0.0301 | - |
|
367 |
+
| 1.5510 | 11400 | 0.0309 | - |
|
368 |
+
| 1.5578 | 11450 | 0.0346 | - |
|
369 |
+
| 1.5646 | 11500 | 0.0406 | - |
|
370 |
+
| 1.5714 | 11550 | 0.034 | - |
|
371 |
+
| 1.5782 | 11600 | 0.0273 | - |
|
372 |
+
| 1.5850 | 11650 | 0.0316 | - |
|
373 |
+
| 1.5918 | 11700 | 0.0404 | - |
|
374 |
+
| 1.5986 | 11750 | 0.0295 | - |
|
375 |
+
| 1.6054 | 11800 | 0.0385 | - |
|
376 |
+
| 1.6122 | 11850 | 0.0373 | - |
|
377 |
+
| 1.6190 | 11900 | 0.0384 | - |
|
378 |
+
| 1.6259 | 11950 | 0.0307 | - |
|
379 |
+
| 1.6327 | 12000 | 0.0222 | - |
|
380 |
+
| 1.6395 | 12050 | 0.0257 | - |
|
381 |
+
| 1.6463 | 12100 | 0.0313 | - |
|
382 |
+
| 1.6531 | 12150 | 0.0293 | - |
|
383 |
+
| 1.6599 | 12200 | 0.0312 | - |
|
384 |
+
| 1.6667 | 12250 | 0.0299 | - |
|
385 |
+
| 1.6735 | 12300 | 0.0284 | - |
|
386 |
+
| 1.6803 | 12350 | 0.042 | - |
|
387 |
+
| 1.6871 | 12400 | 0.031 | - |
|
388 |
+
| 1.6939 | 12450 | 0.0295 | - |
|
389 |
+
| 1.7007 | 12500 | 0.0339 | - |
|
390 |
+
| 1.7075 | 12550 | 0.0385 | - |
|
391 |
+
| 1.7143 | 12600 | 0.0355 | - |
|
392 |
+
| 1.7211 | 12650 | 0.0291 | - |
|
393 |
+
| 1.7279 | 12700 | 0.0366 | - |
|
394 |
+
| 1.7347 | 12750 | 0.0337 | - |
|
395 |
+
| 1.7415 | 12800 | 0.0268 | - |
|
396 |
+
| 1.7483 | 12850 | 0.0373 | - |
|
397 |
+
| 1.7551 | 12900 | 0.0404 | - |
|
398 |
+
| 1.7619 | 12950 | 0.025 | - |
|
399 |
+
| 1.7687 | 13000 | 0.0282 | - |
|
400 |
+
| 1.7755 | 13050 | 0.0282 | - |
|
401 |
+
| 1.7823 | 13100 | 0.0341 | - |
|
402 |
+
| 1.7891 | 13150 | 0.0338 | - |
|
403 |
+
| 1.7959 | 13200 | 0.0342 | - |
|
404 |
+
| 1.8027 | 13250 | 0.035 | - |
|
405 |
+
| 1.8095 | 13300 | 0.0399 | - |
|
406 |
+
| 1.8163 | 13350 | 0.035 | - |
|
407 |
+
| 1.8231 | 13400 | 0.0367 | - |
|
408 |
+
| 1.8299 | 13450 | 0.0294 | - |
|
409 |
+
| 1.8367 | 13500 | 0.0382 | - |
|
410 |
+
| 1.8435 | 13550 | 0.0261 | - |
|
411 |
+
| 1.8503 | 13600 | 0.0301 | - |
|
412 |
+
| 1.8571 | 13650 | 0.0258 | - |
|
413 |
+
| 1.8639 | 13700 | 0.0301 | - |
|
414 |
+
| 1.8707 | 13750 | 0.0306 | - |
|
415 |
+
| 1.8776 | 13800 | 0.0242 | - |
|
416 |
+
| 1.8844 | 13850 | 0.0258 | - |
|
417 |
+
| 1.8912 | 13900 | 0.0296 | - |
|
418 |
+
| 1.8980 | 13950 | 0.0338 | - |
|
419 |
+
| 1.9048 | 14000 | 0.0315 | - |
|
420 |
+
| 1.9116 | 14050 | 0.0282 | - |
|
421 |
+
| 1.9184 | 14100 | 0.0325 | - |
|
422 |
+
| 1.9252 | 14150 | 0.0286 | - |
|
423 |
+
| 1.9320 | 14200 | 0.0355 | - |
|
424 |
+
| 1.9388 | 14250 | 0.0317 | - |
|
425 |
+
| 1.9456 | 14300 | 0.0314 | - |
|
426 |
+
| 1.9524 | 14350 | 0.031 | - |
|
427 |
+
| 1.9592 | 14400 | 0.03 | - |
|
428 |
+
| 1.9660 | 14450 | 0.0262 | - |
|
429 |
+
| 1.9728 | 14500 | 0.0275 | - |
|
430 |
+
| 1.9796 | 14550 | 0.0356 | - |
|
431 |
+
| 1.9864 | 14600 | 0.0369 | - |
|
432 |
+
| 1.9932 | 14650 | 0.0364 | - |
|
433 |
+
| 2.0 | 14700 | 0.0344 | - |
|
434 |
+
| 2.0068 | 14750 | 0.0248 | - |
|
435 |
+
| 2.0136 | 14800 | 0.0273 | - |
|
436 |
+
| 2.0204 | 14850 | 0.0282 | - |
|
437 |
+
| 2.0272 | 14900 | 0.023 | - |
|
438 |
+
| 2.0340 | 14950 | 0.0278 | - |
|
439 |
+
| 2.0408 | 15000 | 0.0355 | - |
|
440 |
+
| 2.0476 | 15050 | 0.0258 | - |
|
441 |
+
| 2.0544 | 15100 | 0.0258 | - |
|
442 |
+
| 2.0612 | 15150 | 0.0322 | - |
|
443 |
+
| 2.0680 | 15200 | 0.0266 | - |
|
444 |
+
| 2.0748 | 15250 | 0.0279 | - |
|
445 |
+
| 2.0816 | 15300 | 0.0282 | - |
|
446 |
+
| 2.0884 | 15350 | 0.0289 | - |
|
447 |
+
| 2.0952 | 15400 | 0.024 | - |
|
448 |
+
| 2.1020 | 15450 | 0.0268 | - |
|
449 |
+
| 2.1088 | 15500 | 0.0348 | - |
|
450 |
+
| 2.1156 | 15550 | 0.0281 | - |
|
451 |
+
| 2.1224 | 15600 | 0.0282 | - |
|
452 |
+
| 2.1293 | 15650 | 0.0218 | - |
|
453 |
+
| 2.1361 | 15700 | 0.0201 | - |
|
454 |
+
| 2.1429 | 15750 | 0.0207 | - |
|
455 |
+
| 2.1497 | 15800 | 0.0308 | - |
|
456 |
+
| 2.1565 | 15850 | 0.0261 | - |
|
457 |
+
| 2.1633 | 15900 | 0.0292 | - |
|
458 |
+
| 2.1701 | 15950 | 0.0308 | - |
|
459 |
+
| 2.1769 | 16000 | 0.0298 | - |
|
460 |
+
| 2.1837 | 16050 | 0.0308 | - |
|
461 |
+
| 2.1905 | 16100 | 0.0359 | - |
|
462 |
+
| 2.1973 | 16150 | 0.0265 | - |
|
463 |
+
| 2.2041 | 16200 | 0.0351 | - |
|
464 |
+
| 2.2109 | 16250 | 0.0223 | - |
|
465 |
+
| 2.2177 | 16300 | 0.0322 | - |
|
466 |
+
| 2.2245 | 16350 | 0.0261 | - |
|
467 |
+
| 2.2313 | 16400 | 0.0206 | - |
|
468 |
+
| 2.2381 | 16450 | 0.0384 | - |
|
469 |
+
| 2.2449 | 16500 | 0.0381 | - |
|
470 |
+
| 2.2517 | 16550 | 0.0238 | - |
|
471 |
+
| 2.2585 | 16600 | 0.0261 | - |
|
472 |
+
| 2.2653 | 16650 | 0.0323 | - |
|
473 |
+
| 2.2721 | 16700 | 0.0296 | - |
|
474 |
+
| 2.2789 | 16750 | 0.0256 | - |
|
475 |
+
| 2.2857 | 16800 | 0.0287 | - |
|
476 |
+
| 2.2925 | 16850 | 0.0272 | - |
|
477 |
+
| 2.2993 | 16900 | 0.0285 | - |
|
478 |
+
| 2.3061 | 16950 | 0.0245 | - |
|
479 |
+
| 2.3129 | 17000 | 0.0299 | - |
|
480 |
+
| 2.3197 | 17050 | 0.0193 | - |
|
481 |
+
| 2.3265 | 17100 | 0.0234 | - |
|
482 |
+
| 2.3333 | 17150 | 0.0308 | - |
|
483 |
+
| 2.3401 | 17200 | 0.0239 | - |
|
484 |
+
| 2.3469 | 17250 | 0.0309 | - |
|
485 |
+
| 2.3537 | 17300 | 0.0331 | - |
|
486 |
+
| 2.3605 | 17350 | 0.0316 | - |
|
487 |
+
| 2.3673 | 17400 | 0.0292 | - |
|
488 |
+
| 2.3741 | 17450 | 0.0337 | - |
|
489 |
+
| 2.3810 | 17500 | 0.0338 | - |
|
490 |
+
| 2.3878 | 17550 | 0.0288 | - |
|
491 |
+
| 2.3946 | 17600 | 0.031 | - |
|
492 |
+
| 2.4014 | 17650 | 0.0251 | - |
|
493 |
+
| 2.4082 | 17700 | 0.0288 | - |
|
494 |
+
| 2.4150 | 17750 | 0.0249 | - |
|
495 |
+
| 2.4218 | 17800 | 0.0281 | - |
|
496 |
+
| 2.4286 | 17850 | 0.0284 | - |
|
497 |
+
| 2.4354 | 17900 | 0.0268 | - |
|
498 |
+
| 2.4422 | 17950 | 0.0303 | - |
|
499 |
+
| 2.4490 | 18000 | 0.0233 | - |
|
500 |
+
| 2.4558 | 18050 | 0.0297 | - |
|
501 |
+
| 2.4626 | 18100 | 0.0265 | - |
|
502 |
+
| 2.4694 | 18150 | 0.0306 | - |
|
503 |
+
| 2.4762 | 18200 | 0.0286 | - |
|
504 |
+
| 2.4830 | 18250 | 0.0278 | - |
|
505 |
+
| 2.4898 | 18300 | 0.0254 | - |
|
506 |
+
| 2.4966 | 18350 | 0.0278 | - |
|
507 |
+
| 2.5034 | 18400 | 0.0257 | - |
|
508 |
+
| 2.5102 | 18450 | 0.0272 | - |
|
509 |
+
| 2.5170 | 18500 | 0.0297 | - |
|
510 |
+
| 2.5238 | 18550 | 0.0262 | - |
|
511 |
+
| 2.5306 | 18600 | 0.0309 | - |
|
512 |
+
| 2.5374 | 18650 | 0.0259 | - |
|
513 |
+
| 2.5442 | 18700 | 0.0212 | - |
|
514 |
+
| 2.5510 | 18750 | 0.026 | - |
|
515 |
+
| 2.5578 | 18800 | 0.0252 | - |
|
516 |
+
| 2.5646 | 18850 | 0.0228 | - |
|
517 |
+
| 2.5714 | 18900 | 0.0304 | - |
|
518 |
+
| 2.5782 | 18950 | 0.0278 | - |
|
519 |
+
| 2.5850 | 19000 | 0.0263 | - |
|
520 |
+
| 2.5918 | 19050 | 0.0305 | - |
|
521 |
+
| 2.5986 | 19100 | 0.0315 | - |
|
522 |
+
| 2.6054 | 19150 | 0.0288 | - |
|
523 |
+
| 2.6122 | 19200 | 0.0221 | - |
|
524 |
+
| 2.6190 | 19250 | 0.022 | - |
|
525 |
+
| 2.6259 | 19300 | 0.0299 | - |
|
526 |
+
| 2.6327 | 19350 | 0.0302 | - |
|
527 |
+
| 2.6395 | 19400 | 0.0282 | - |
|
528 |
+
| 2.6463 | 19450 | 0.0308 | - |
|
529 |
+
| 2.6531 | 19500 | 0.0306 | - |
|
530 |
+
| 2.6599 | 19550 | 0.0327 | - |
|
531 |
+
| 2.6667 | 19600 | 0.0284 | - |
|
532 |
+
| 2.6735 | 19650 | 0.0185 | - |
|
533 |
+
| 2.6803 | 19700 | 0.0248 | - |
|
534 |
+
| 2.6871 | 19750 | 0.0212 | - |
|
535 |
+
| 2.6939 | 19800 | 0.0254 | - |
|
536 |
+
| 2.7007 | 19850 | 0.0276 | - |
|
537 |
+
| 2.7075 | 19900 | 0.027 | - |
|
538 |
+
| 2.7143 | 19950 | 0.0261 | - |
|
539 |
+
| 2.7211 | 20000 | 0.0307 | - |
|
540 |
+
| 2.7279 | 20050 | 0.0225 | - |
|
541 |
+
| 2.7347 | 20100 | 0.0189 | - |
|
542 |
+
| 2.7415 | 20150 | 0.0325 | - |
|
543 |
+
| 2.7483 | 20200 | 0.0304 | - |
|
544 |
+
| 2.7551 | 20250 | 0.0351 | - |
|
545 |
+
| 2.7619 | 20300 | 0.0274 | - |
|
546 |
+
| 2.7687 | 20350 | 0.0318 | - |
|
547 |
+
| 2.7755 | 20400 | 0.0266 | - |
|
548 |
+
| 2.7823 | 20450 | 0.0211 | - |
|
549 |
+
| 2.7891 | 20500 | 0.0388 | - |
|
550 |
+
| 2.7959 | 20550 | 0.0245 | - |
|
551 |
+
| 2.8027 | 20600 | 0.0307 | - |
|
552 |
+
| 2.8095 | 20650 | 0.0346 | - |
|
553 |
+
| 2.8163 | 20700 | 0.0251 | - |
|
554 |
+
| 2.8231 | 20750 | 0.0289 | - |
|
555 |
+
| 2.8299 | 20800 | 0.0338 | - |
|
556 |
+
| 2.8367 | 20850 | 0.0228 | - |
|
557 |
+
| 2.8435 | 20900 | 0.0248 | - |
|
558 |
+
| 2.8503 | 20950 | 0.0176 | - |
|
559 |
+
| 2.8571 | 21000 | 0.0277 | - |
|
560 |
+
| 2.8639 | 21050 | 0.0312 | - |
|
561 |
+
| 2.8707 | 21100 | 0.0271 | - |
|
562 |
+
| 2.8776 | 21150 | 0.0251 | - |
|
563 |
+
| 2.8844 | 21200 | 0.0253 | - |
|
564 |
+
| 2.8912 | 21250 | 0.0304 | - |
|
565 |
+
| 2.8980 | 21300 | 0.0321 | - |
|
566 |
+
| 2.9048 | 21350 | 0.0223 | - |
|
567 |
+
| 2.9116 | 21400 | 0.0269 | - |
|
568 |
+
| 2.9184 | 21450 | 0.0326 | - |
|
569 |
+
| 2.9252 | 21500 | 0.0226 | - |
|
570 |
+
| 2.9320 | 21550 | 0.0347 | - |
|
571 |
+
| 2.9388 | 21600 | 0.0223 | - |
|
572 |
+
| 2.9456 | 21650 | 0.0256 | - |
|
573 |
+
| 2.9524 | 21700 | 0.0256 | - |
|
574 |
+
| 2.9592 | 21750 | 0.0322 | - |
|
575 |
+
| 2.9660 | 21800 | 0.0281 | - |
|
576 |
+
| 2.9728 | 21850 | 0.0318 | - |
|
577 |
+
| 2.9796 | 21900 | 0.0279 | - |
|
578 |
+
| 2.9864 | 21950 | 0.0303 | - |
|
579 |
+
| 2.9932 | 22000 | 0.0349 | - |
|
580 |
+
| 3.0 | 22050 | 0.0254 | - |
|
581 |
+
| 3.0068 | 22100 | 0.0185 | - |
|
582 |
+
| 3.0136 | 22150 | 0.0241 | - |
|
583 |
+
| 3.0204 | 22200 | 0.0285 | - |
|
584 |
+
| 3.0272 | 22250 | 0.0257 | - |
|
585 |
+
| 3.0340 | 22300 | 0.0247 | - |
|
586 |
+
| 3.0408 | 22350 | 0.023 | - |
|
587 |
+
| 3.0476 | 22400 | 0.0335 | - |
|
588 |
+
| 3.0544 | 22450 | 0.0302 | - |
|
589 |
+
| 3.0612 | 22500 | 0.0249 | - |
|
590 |
+
| 3.0680 | 22550 | 0.029 | - |
|
591 |
+
| 3.0748 | 22600 | 0.0312 | - |
|
592 |
+
| 3.0816 | 22650 | 0.0303 | - |
|
593 |
+
| 3.0884 | 22700 | 0.0225 | - |
|
594 |
+
| 3.0952 | 22750 | 0.0271 | - |
|
595 |
+
| 3.1020 | 22800 | 0.0275 | - |
|
596 |
+
| 3.1088 | 22850 | 0.0264 | - |
|
597 |
+
| 3.1156 | 22900 | 0.0202 | - |
|
598 |
+
| 3.1224 | 22950 | 0.0247 | - |
|
599 |
+
| 3.1293 | 23000 | 0.0292 | - |
|
600 |
+
| 3.1361 | 23050 | 0.0235 | - |
|
601 |
+
| 3.1429 | 23100 | 0.019 | - |
|
602 |
+
| 3.1497 | 23150 | 0.0247 | - |
|
603 |
+
| 3.1565 | 23200 | 0.0219 | - |
|
604 |
+
| 3.1633 | 23250 | 0.0217 | - |
|
605 |
+
| 3.1701 | 23300 | 0.0236 | - |
|
606 |
+
| 3.1769 | 23350 | 0.0223 | - |
|
607 |
+
| 3.1837 | 23400 | 0.0237 | - |
|
608 |
+
| 3.1905 | 23450 | 0.0307 | - |
|
609 |
+
| 3.1973 | 23500 | 0.0275 | - |
|
610 |
+
| 3.2041 | 23550 | 0.0192 | - |
|
611 |
+
| 3.2109 | 23600 | 0.0198 | - |
|
612 |
+
| 3.2177 | 23650 | 0.0322 | - |
|
613 |
+
| 3.2245 | 23700 | 0.0195 | - |
|
614 |
+
| 3.2313 | 23750 | 0.019 | - |
|
615 |
+
| 3.2381 | 23800 | 0.0266 | - |
|
616 |
+
| 3.2449 | 23850 | 0.0287 | - |
|
617 |
+
| 3.2517 | 23900 | 0.0205 | - |
|
618 |
+
| 3.2585 | 23950 | 0.025 | - |
|
619 |
+
| 3.2653 | 24000 | 0.0282 | - |
|
620 |
+
| 3.2721 | 24050 | 0.0261 | - |
|
621 |
+
| 3.2789 | 24100 | 0.0275 | - |
|
622 |
+
| 3.2857 | 24150 | 0.0273 | - |
|
623 |
+
| 3.2925 | 24200 | 0.0195 | - |
|
624 |
+
| 3.2993 | 24250 | 0.0265 | - |
|
625 |
+
| 3.3061 | 24300 | 0.0276 | - |
|
626 |
+
| 3.3129 | 24350 | 0.0277 | - |
|
627 |
+
| 3.3197 | 24400 | 0.0224 | - |
|
628 |
+
| 3.3265 | 24450 | 0.0231 | - |
|
629 |
+
| 3.3333 | 24500 | 0.0275 | - |
|
630 |
+
| 3.3401 | 24550 | 0.0333 | - |
|
631 |
+
| 3.3469 | 24600 | 0.0181 | - |
|
632 |
+
| 3.3537 | 24650 | 0.0266 | - |
|
633 |
+
| 3.3605 | 24700 | 0.0268 | - |
|
634 |
+
| 3.3673 | 24750 | 0.0177 | - |
|
635 |
+
| 3.3741 | 24800 | 0.0185 | - |
|
636 |
+
| 3.3810 | 24850 | 0.023 | - |
|
637 |
+
| 3.3878 | 24900 | 0.0281 | - |
|
638 |
+
| 3.3946 | 24950 | 0.0202 | - |
|
639 |
+
| 3.4014 | 25000 | 0.0206 | - |
|
640 |
+
| 3.4082 | 25050 | 0.0224 | - |
|
641 |
+
| 3.4150 | 25100 | 0.0275 | - |
|
642 |
+
| 3.4218 | 25150 | 0.0272 | - |
|
643 |
+
| 3.4286 | 25200 | 0.0221 | - |
|
644 |
+
| 3.4354 | 25250 | 0.0259 | - |
|
645 |
+
| 3.4422 | 25300 | 0.0244 | - |
|
646 |
+
| 3.4490 | 25350 | 0.034 | - |
|
647 |
+
| 3.4558 | 25400 | 0.0258 | - |
|
648 |
+
| 3.4626 | 25450 | 0.0271 | - |
|
649 |
+
| 3.4694 | 25500 | 0.0291 | - |
|
650 |
+
| 3.4762 | 25550 | 0.0204 | - |
|
651 |
+
| 3.4830 | 25600 | 0.0248 | - |
|
652 |
+
| 3.4898 | 25650 | 0.0225 | - |
|
653 |
+
| 3.4966 | 25700 | 0.0347 | - |
|
654 |
+
| 3.5034 | 25750 | 0.0243 | - |
|
655 |
+
| 3.5102 | 25800 | 0.031 | - |
|
656 |
+
| 3.5170 | 25850 | 0.024 | - |
|
657 |
+
| 3.5238 | 25900 | 0.0199 | - |
|
658 |
+
| 3.5306 | 25950 | 0.0278 | - |
|
659 |
+
| 3.5374 | 26000 | 0.0318 | - |
|
660 |
+
| 3.5442 | 26050 | 0.0267 | - |
|
661 |
+
| 3.5510 | 26100 | 0.027 | - |
|
662 |
+
| 3.5578 | 26150 | 0.0191 | - |
|
663 |
+
| 3.5646 | 26200 | 0.0233 | - |
|
664 |
+
| 3.5714 | 26250 | 0.0239 | - |
|
665 |
+
| 3.5782 | 26300 | 0.0203 | - |
|
666 |
+
| 3.5850 | 26350 | 0.0243 | - |
|
667 |
+
| 3.5918 | 26400 | 0.0246 | - |
|
668 |
+
| 3.5986 | 26450 | 0.0233 | - |
|
669 |
+
| 3.6054 | 26500 | 0.0364 | - |
|
670 |
+
| 3.6122 | 26550 | 0.0273 | - |
|
671 |
+
| 3.6190 | 26600 | 0.0269 | - |
|
672 |
+
| 3.6259 | 26650 | 0.0206 | - |
|
673 |
+
| 3.6327 | 26700 | 0.0316 | - |
|
674 |
+
| 3.6395 | 26750 | 0.023 | - |
|
675 |
+
| 3.6463 | 26800 | 0.0257 | - |
|
676 |
+
| 3.6531 | 26850 | 0.0263 | - |
|
677 |
+
| 3.6599 | 26900 | 0.0218 | - |
|
678 |
+
| 3.6667 | 26950 | 0.0257 | - |
|
679 |
+
| 3.6735 | 27000 | 0.0228 | - |
|
680 |
+
| 3.6803 | 27050 | 0.0256 | - |
|
681 |
+
| 3.6871 | 27100 | 0.0239 | - |
|
682 |
+
| 3.6939 | 27150 | 0.0225 | - |
|
683 |
+
| 3.7007 | 27200 | 0.0294 | - |
|
684 |
+
| 3.7075 | 27250 | 0.0187 | - |
|
685 |
+
| 3.7143 | 27300 | 0.02 | - |
|
686 |
+
| 3.7211 | 27350 | 0.0261 | - |
|
687 |
+
| 3.7279 | 27400 | 0.0201 | - |
|
688 |
+
| 3.7347 | 27450 | 0.0253 | - |
|
689 |
+
| 3.7415 | 27500 | 0.0265 | - |
|
690 |
+
| 3.7483 | 27550 | 0.0303 | - |
|
691 |
+
| 3.7551 | 27600 | 0.0239 | - |
|
692 |
+
| 3.7619 | 27650 | 0.0246 | - |
|
693 |
+
| 3.7687 | 27700 | 0.0249 | - |
|
694 |
+
| 3.7755 | 27750 | 0.023 | - |
|
695 |
+
| 3.7823 | 27800 | 0.0237 | - |
|
696 |
+
| 3.7891 | 27850 | 0.0197 | - |
|
697 |
+
| 3.7959 | 27900 | 0.0268 | - |
|
698 |
+
| 3.8027 | 27950 | 0.0246 | - |
|
699 |
+
| 3.8095 | 28000 | 0.029 | - |
|
700 |
+
| 3.8163 | 28050 | 0.0248 | - |
|
701 |
+
| 3.8231 | 28100 | 0.0275 | - |
|
702 |
+
| 3.8299 | 28150 | 0.0241 | - |
|
703 |
+
| 3.8367 | 28200 | 0.027 | - |
|
704 |
+
| 3.8435 | 28250 | 0.0252 | - |
|
705 |
+
| 3.8503 | 28300 | 0.0245 | - |
|
706 |
+
| 3.8571 | 28350 | 0.0241 | - |
|
707 |
+
| 3.8639 | 28400 | 0.0264 | - |
|
708 |
+
| 3.8707 | 28450 | 0.0233 | - |
|
709 |
+
| 3.8776 | 28500 | 0.0319 | - |
|
710 |
+
| 3.8844 | 28550 | 0.0236 | - |
|
711 |
+
| 3.8912 | 28600 | 0.0277 | - |
|
712 |
+
| 3.8980 | 28650 | 0.0178 | - |
|
713 |
+
| 3.9048 | 28700 | 0.0209 | - |
|
714 |
+
| 3.9116 | 28750 | 0.0263 | - |
|
715 |
+
| 3.9184 | 28800 | 0.0236 | - |
|
716 |
+
| 3.9252 | 28850 | 0.0216 | - |
|
717 |
+
| 3.9320 | 28900 | 0.0209 | - |
|
718 |
+
| 3.9388 | 28950 | 0.0283 | - |
|
719 |
+
| 3.9456 | 29000 | 0.0307 | - |
|
720 |
+
| 3.9524 | 29050 | 0.0276 | - |
|
721 |
+
| 3.9592 | 29100 | 0.0277 | - |
|
722 |
+
| 3.9660 | 29150 | 0.031 | - |
|
723 |
+
| 3.9728 | 29200 | 0.0304 | - |
|
724 |
+
| 3.9796 | 29250 | 0.0332 | - |
|
725 |
+
| 3.9864 | 29300 | 0.0277 | - |
|
726 |
+
| 3.9932 | 29350 | 0.0233 | - |
|
727 |
+
| 4.0 | 29400 | 0.0237 | - |
|
728 |
+
|
729 |
+
### Framework Versions
|
730 |
+
- Python: 3.11.13
|
731 |
+
- SetFit: 1.1.2
|
732 |
+
- Sentence Transformers: 4.1.0
|
733 |
+
- Transformers: 4.52.4
|
734 |
+
- PyTorch: 2.6.0+cu124
|
735 |
+
- Datasets: 3.6.0
|
736 |
+
- Tokenizers: 0.21.1
|
737 |
+
|
738 |
+
## Citation
|
739 |
+
|
740 |
+
### BibTeX
|
741 |
+
```bibtex
|
742 |
+
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
743 |
+
doi = {10.48550/ARXIV.2209.11055},
|
744 |
+
url = {https://arxiv.org/abs/2209.11055},
|
745 |
+
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
746 |
+
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
747 |
+
title = {Efficient Few-Shot Learning Without Prompts},
|
748 |
+
publisher = {arXiv},
|
749 |
+
year = {2022},
|
750 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
751 |
+
}
|
752 |
+
```
|
753 |
+
|
754 |
+
<!--
|
755 |
+
## Glossary
|
756 |
+
|
757 |
+
*Clearly define terms in order to be accessible across audiences.*
|
758 |
+
-->
|
759 |
+
|
760 |
+
<!--
|
761 |
+
## Model Card Authors
|
762 |
+
|
763 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
764 |
+
-->
|
765 |
+
|
766 |
+
<!--
|
767 |
+
## Model Card Contact
|
768 |
+
|
769 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
770 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"BertModel"
|
4 |
+
],
|
5 |
+
"attention_probs_dropout_prob": 0.1,
|
6 |
+
"classifier_dropout": null,
|
7 |
+
"gradient_checkpointing": false,
|
8 |
+
"hidden_act": "gelu",
|
9 |
+
"hidden_dropout_prob": 0.1,
|
10 |
+
"hidden_size": 384,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 1536,
|
13 |
+
"layer_norm_eps": 1e-12,
|
14 |
+
"max_position_embeddings": 512,
|
15 |
+
"model_type": "bert",
|
16 |
+
"num_attention_heads": 12,
|
17 |
+
"num_hidden_layers": 12,
|
18 |
+
"pad_token_id": 0,
|
19 |
+
"position_embedding_type": "absolute",
|
20 |
+
"torch_dtype": "float32",
|
21 |
+
"transformers_version": "4.52.4",
|
22 |
+
"type_vocab_size": 2,
|
23 |
+
"use_cache": true,
|
24 |
+
"vocab_size": 250037
|
25 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "4.1.0",
|
4 |
+
"transformers": "4.52.4",
|
5 |
+
"pytorch": "2.6.0+cu124"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine"
|
10 |
+
}
|
config_setfit.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"normalize_embeddings": false,
|
3 |
+
"labels": null
|
4 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:91a1ba85d509144e1a92b030851961f13da87026dc45debdfe1415138d820190
|
3 |
+
size 470637416
|
model_head.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a69dc78b0ee485e09759961299f2ded8ae9b31be35dac27ae9c5e502ccab9e07
|
3 |
+
size 168004
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 128,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "<s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "<mask>",
|
25 |
+
"lstrip": true,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "<pad>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "</s>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "<unk>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cad551d5600a84242d0973327029452a1e3672ba6313c2a3c3d69c4310e12719
|
3 |
+
size 17082987
|
tokenizer_config.json
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"250001": {
|
36 |
+
"content": "<mask>",
|
37 |
+
"lstrip": true,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "<s>",
|
45 |
+
"clean_up_tokenization_spaces": false,
|
46 |
+
"cls_token": "<s>",
|
47 |
+
"do_lower_case": true,
|
48 |
+
"eos_token": "</s>",
|
49 |
+
"extra_special_tokens": {},
|
50 |
+
"mask_token": "<mask>",
|
51 |
+
"max_length": 128,
|
52 |
+
"model_max_length": 128,
|
53 |
+
"pad_to_multiple_of": null,
|
54 |
+
"pad_token": "<pad>",
|
55 |
+
"pad_token_type_id": 0,
|
56 |
+
"padding_side": "right",
|
57 |
+
"sep_token": "</s>",
|
58 |
+
"stride": 0,
|
59 |
+
"strip_accents": null,
|
60 |
+
"tokenize_chinese_chars": true,
|
61 |
+
"tokenizer_class": "BertTokenizer",
|
62 |
+
"truncation_side": "right",
|
63 |
+
"truncation_strategy": "longest_first",
|
64 |
+
"unk_token": "<unk>"
|
65 |
+
}
|
unigram.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:da145b5e7700ae40f16691ec32a0b1fdc1ee3298db22a31ea55f57a966c4a65d
|
3 |
+
size 14763260
|