lgsilvaesilva commited on
Commit
29ebf39
·
verified ·
1 Parent(s): eb651a5

Push model using huggingface_hub.

Browse files
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
+ unigram.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,770 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - setfit
4
+ - sentence-transformers
5
+ - text-classification
6
+ - generated_from_setfit_trainer
7
+ widget:
8
+ - text: Government-led initiatives have introduced tailored insurance products that
9
+ mitigate the financial risks faced by smallholder farmers exposed to climate-induced
10
+ hazards such as droughts and floods.
11
+ - text: "National Food and Nutrition Strategic Plan 2011-2015\n\n53\n\n\n\n5.10.7\
12
+ \ Resource allocation and generation \n\nThe resources required for monitoring\
13
+ \ and evaluation of nutrition intervention should \nnormally be built into the\
14
+ \ cost of the intervention programmes."
15
+ - text: 'COVID-19: The Development Program for Drinking Water Supply and Sanitation
16
+ Systems of the Kyrgyz Republic until 2026 was approved.
17
+
18
+
19
+ The Program is aimed at increasing the provision of drinking water of standard
20
+ quality, improving the health and quality of life of the population of the republic,
21
+ reducing the harmful effects on the environment through the construction, reconstruction,
22
+ and modernization of drinking water supply and sanitation systems.'
23
+ - text: "Objectives of this project are \nto develop socio-economic infrastructure\
24
+ \ in the rural sector, expand road \ntransportation network, conduct rural employment\
25
+ \ activities, and build \n\n\n\n 227\n\nlocal level’s institutional capacity."
26
+ - text: "Housing and Community Amenities \n \n\n133."
27
+ metrics:
28
+ - accuracy
29
+ pipeline_tag: text-classification
30
+ library_name: setfit
31
+ inference: false
32
+ base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
33
+ ---
34
+
35
+ # SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
36
+
37
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) as the Sentence Transformer embedding model. A OneVsRestClassifier instance is used for classification.
38
+
39
+ The model has been trained using an efficient few-shot learning technique that involves:
40
+
41
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
42
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
43
+
44
+ ## Model Details
45
+
46
+ ### Model Description
47
+ - **Model Type:** SetFit
48
+ - **Sentence Transformer body:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2)
49
+ - **Classification head:** a OneVsRestClassifier instance
50
+ - **Maximum Sequence Length:** 128 tokens
51
+ <!-- - **Number of Classes:** Unknown -->
52
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
53
+ <!-- - **Language:** Unknown -->
54
+ <!-- - **License:** Unknown -->
55
+
56
+ ### Model Sources
57
+
58
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
59
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
60
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
61
+
62
+ ## Uses
63
+
64
+ ### Direct Use for Inference
65
+
66
+ First install the SetFit library:
67
+
68
+ ```bash
69
+ pip install setfit
70
+ ```
71
+
72
+ Then you can load this model and run inference.
73
+
74
+ ```python
75
+ from setfit import SetFitModel
76
+
77
+ # Download from the 🤗 Hub
78
+ model = SetFitModel.from_pretrained("faodl/model_g20_multilabel_30sample")
79
+ # Run inference
80
+ preds = model("Housing and Community Amenities
81
+
82
+
83
+ 133.")
84
+ ```
85
+
86
+ <!--
87
+ ### Downstream Use
88
+
89
+ *List how someone could finetune this model on their own dataset.*
90
+ -->
91
+
92
+ <!--
93
+ ### Out-of-Scope Use
94
+
95
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
96
+ -->
97
+
98
+ <!--
99
+ ## Bias, Risks and Limitations
100
+
101
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
102
+ -->
103
+
104
+ <!--
105
+ ### Recommendations
106
+
107
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
108
+ -->
109
+
110
+ ## Training Details
111
+
112
+ ### Training Set Metrics
113
+ | Training set | Min | Median | Max |
114
+ |:-------------|:----|:--------|:----|
115
+ | Word count | 1 | 41.0925 | 506 |
116
+
117
+ ### Training Hyperparameters
118
+ - batch_size: (8, 8)
119
+ - num_epochs: (4, 4)
120
+ - max_steps: -1
121
+ - sampling_strategy: oversampling
122
+ - num_iterations: 20
123
+ - body_learning_rate: (2e-05, 2e-05)
124
+ - head_learning_rate: 2e-05
125
+ - loss: CosineSimilarityLoss
126
+ - distance_metric: cosine_distance
127
+ - margin: 0.25
128
+ - end_to_end: False
129
+ - use_amp: False
130
+ - warmup_proportion: 0.1
131
+ - l2_weight: 0.01
132
+ - seed: 42
133
+ - eval_max_steps: -1
134
+ - load_best_model_at_end: False
135
+
136
+ ### Training Results
137
+ | Epoch | Step | Training Loss | Validation Loss |
138
+ |:------:|:-----:|:-------------:|:---------------:|
139
+ | 0.0001 | 1 | 0.2661 | - |
140
+ | 0.0068 | 50 | 0.1923 | - |
141
+ | 0.0136 | 100 | 0.1856 | - |
142
+ | 0.0204 | 150 | 0.1927 | - |
143
+ | 0.0272 | 200 | 0.1708 | - |
144
+ | 0.0340 | 250 | 0.1706 | - |
145
+ | 0.0408 | 300 | 0.156 | - |
146
+ | 0.0476 | 350 | 0.1597 | - |
147
+ | 0.0544 | 400 | 0.149 | - |
148
+ | 0.0612 | 450 | 0.1488 | - |
149
+ | 0.0680 | 500 | 0.1375 | - |
150
+ | 0.0748 | 550 | 0.1234 | - |
151
+ | 0.0816 | 600 | 0.1339 | - |
152
+ | 0.0884 | 650 | 0.126 | - |
153
+ | 0.0952 | 700 | 0.1347 | - |
154
+ | 0.1020 | 750 | 0.1323 | - |
155
+ | 0.1088 | 800 | 0.1159 | - |
156
+ | 0.1156 | 850 | 0.1236 | - |
157
+ | 0.1224 | 900 | 0.1218 | - |
158
+ | 0.1293 | 950 | 0.1323 | - |
159
+ | 0.1361 | 1000 | 0.1258 | - |
160
+ | 0.1429 | 1050 | 0.1206 | - |
161
+ | 0.1497 | 1100 | 0.1127 | - |
162
+ | 0.1565 | 1150 | 0.1211 | - |
163
+ | 0.1633 | 1200 | 0.1234 | - |
164
+ | 0.1701 | 1250 | 0.1178 | - |
165
+ | 0.1769 | 1300 | 0.1009 | - |
166
+ | 0.1837 | 1350 | 0.11 | - |
167
+ | 0.1905 | 1400 | 0.1103 | - |
168
+ | 0.1973 | 1450 | 0.1015 | - |
169
+ | 0.2041 | 1500 | 0.0926 | - |
170
+ | 0.2109 | 1550 | 0.099 | - |
171
+ | 0.2177 | 1600 | 0.1079 | - |
172
+ | 0.2245 | 1650 | 0.0979 | - |
173
+ | 0.2313 | 1700 | 0.1001 | - |
174
+ | 0.2381 | 1750 | 0.1039 | - |
175
+ | 0.2449 | 1800 | 0.0838 | - |
176
+ | 0.2517 | 1850 | 0.0941 | - |
177
+ | 0.2585 | 1900 | 0.0929 | - |
178
+ | 0.2653 | 1950 | 0.0851 | - |
179
+ | 0.2721 | 2000 | 0.0956 | - |
180
+ | 0.2789 | 2050 | 0.075 | - |
181
+ | 0.2857 | 2100 | 0.1067 | - |
182
+ | 0.2925 | 2150 | 0.0891 | - |
183
+ | 0.2993 | 2200 | 0.0939 | - |
184
+ | 0.3061 | 2250 | 0.0908 | - |
185
+ | 0.3129 | 2300 | 0.0847 | - |
186
+ | 0.3197 | 2350 | 0.0812 | - |
187
+ | 0.3265 | 2400 | 0.0918 | - |
188
+ | 0.3333 | 2450 | 0.0935 | - |
189
+ | 0.3401 | 2500 | 0.0792 | - |
190
+ | 0.3469 | 2550 | 0.0669 | - |
191
+ | 0.3537 | 2600 | 0.0883 | - |
192
+ | 0.3605 | 2650 | 0.0829 | - |
193
+ | 0.3673 | 2700 | 0.0656 | - |
194
+ | 0.3741 | 2750 | 0.0752 | - |
195
+ | 0.3810 | 2800 | 0.0825 | - |
196
+ | 0.3878 | 2850 | 0.0813 | - |
197
+ | 0.3946 | 2900 | 0.0852 | - |
198
+ | 0.4014 | 2950 | 0.0903 | - |
199
+ | 0.4082 | 3000 | 0.0902 | - |
200
+ | 0.4150 | 3050 | 0.0739 | - |
201
+ | 0.4218 | 3100 | 0.0786 | - |
202
+ | 0.4286 | 3150 | 0.083 | - |
203
+ | 0.4354 | 3200 | 0.0648 | - |
204
+ | 0.4422 | 3250 | 0.0704 | - |
205
+ | 0.4490 | 3300 | 0.0798 | - |
206
+ | 0.4558 | 3350 | 0.0651 | - |
207
+ | 0.4626 | 3400 | 0.0705 | - |
208
+ | 0.4694 | 3450 | 0.0653 | - |
209
+ | 0.4762 | 3500 | 0.0767 | - |
210
+ | 0.4830 | 3550 | 0.0747 | - |
211
+ | 0.4898 | 3600 | 0.0738 | - |
212
+ | 0.4966 | 3650 | 0.055 | - |
213
+ | 0.5034 | 3700 | 0.0741 | - |
214
+ | 0.5102 | 3750 | 0.0688 | - |
215
+ | 0.5170 | 3800 | 0.0699 | - |
216
+ | 0.5238 | 3850 | 0.0787 | - |
217
+ | 0.5306 | 3900 | 0.0673 | - |
218
+ | 0.5374 | 3950 | 0.0629 | - |
219
+ | 0.5442 | 4000 | 0.0639 | - |
220
+ | 0.5510 | 4050 | 0.0809 | - |
221
+ | 0.5578 | 4100 | 0.0694 | - |
222
+ | 0.5646 | 4150 | 0.0696 | - |
223
+ | 0.5714 | 4200 | 0.0577 | - |
224
+ | 0.5782 | 4250 | 0.0707 | - |
225
+ | 0.5850 | 4300 | 0.0542 | - |
226
+ | 0.5918 | 4350 | 0.0541 | - |
227
+ | 0.5986 | 4400 | 0.0462 | - |
228
+ | 0.6054 | 4450 | 0.0675 | - |
229
+ | 0.6122 | 4500 | 0.0561 | - |
230
+ | 0.6190 | 4550 | 0.056 | - |
231
+ | 0.6259 | 4600 | 0.0556 | - |
232
+ | 0.6327 | 4650 | 0.0552 | - |
233
+ | 0.6395 | 4700 | 0.0566 | - |
234
+ | 0.6463 | 4750 | 0.0578 | - |
235
+ | 0.6531 | 4800 | 0.0488 | - |
236
+ | 0.6599 | 4850 | 0.0419 | - |
237
+ | 0.6667 | 4900 | 0.0485 | - |
238
+ | 0.6735 | 4950 | 0.0477 | - |
239
+ | 0.6803 | 5000 | 0.0566 | - |
240
+ | 0.6871 | 5050 | 0.0571 | - |
241
+ | 0.6939 | 5100 | 0.0531 | - |
242
+ | 0.7007 | 5150 | 0.0563 | - |
243
+ | 0.7075 | 5200 | 0.0452 | - |
244
+ | 0.7143 | 5250 | 0.0459 | - |
245
+ | 0.7211 | 5300 | 0.039 | - |
246
+ | 0.7279 | 5350 | 0.0382 | - |
247
+ | 0.7347 | 5400 | 0.0679 | - |
248
+ | 0.7415 | 5450 | 0.0465 | - |
249
+ | 0.7483 | 5500 | 0.0493 | - |
250
+ | 0.7551 | 5550 | 0.0489 | - |
251
+ | 0.7619 | 5600 | 0.0443 | - |
252
+ | 0.7687 | 5650 | 0.0591 | - |
253
+ | 0.7755 | 5700 | 0.0441 | - |
254
+ | 0.7823 | 5750 | 0.0501 | - |
255
+ | 0.7891 | 5800 | 0.0497 | - |
256
+ | 0.7959 | 5850 | 0.0543 | - |
257
+ | 0.8027 | 5900 | 0.05 | - |
258
+ | 0.8095 | 5950 | 0.0449 | - |
259
+ | 0.8163 | 6000 | 0.0432 | - |
260
+ | 0.8231 | 6050 | 0.0491 | - |
261
+ | 0.8299 | 6100 | 0.0507 | - |
262
+ | 0.8367 | 6150 | 0.0405 | - |
263
+ | 0.8435 | 6200 | 0.0426 | - |
264
+ | 0.8503 | 6250 | 0.0528 | - |
265
+ | 0.8571 | 6300 | 0.0428 | - |
266
+ | 0.8639 | 6350 | 0.0534 | - |
267
+ | 0.8707 | 6400 | 0.0512 | - |
268
+ | 0.8776 | 6450 | 0.049 | - |
269
+ | 0.8844 | 6500 | 0.0386 | - |
270
+ | 0.8912 | 6550 | 0.0468 | - |
271
+ | 0.8980 | 6600 | 0.0505 | - |
272
+ | 0.9048 | 6650 | 0.0538 | - |
273
+ | 0.9116 | 6700 | 0.0484 | - |
274
+ | 0.9184 | 6750 | 0.044 | - |
275
+ | 0.9252 | 6800 | 0.0431 | - |
276
+ | 0.9320 | 6850 | 0.0456 | - |
277
+ | 0.9388 | 6900 | 0.0342 | - |
278
+ | 0.9456 | 6950 | 0.0445 | - |
279
+ | 0.9524 | 7000 | 0.0499 | - |
280
+ | 0.9592 | 7050 | 0.0589 | - |
281
+ | 0.9660 | 7100 | 0.0409 | - |
282
+ | 0.9728 | 7150 | 0.04 | - |
283
+ | 0.9796 | 7200 | 0.0443 | - |
284
+ | 0.9864 | 7250 | 0.0373 | - |
285
+ | 0.9932 | 7300 | 0.0306 | - |
286
+ | 1.0 | 7350 | 0.0303 | - |
287
+ | 1.0068 | 7400 | 0.0317 | - |
288
+ | 1.0136 | 7450 | 0.0364 | - |
289
+ | 1.0204 | 7500 | 0.0349 | - |
290
+ | 1.0272 | 7550 | 0.0388 | - |
291
+ | 1.0340 | 7600 | 0.0466 | - |
292
+ | 1.0408 | 7650 | 0.0334 | - |
293
+ | 1.0476 | 7700 | 0.0512 | - |
294
+ | 1.0544 | 7750 | 0.0413 | - |
295
+ | 1.0612 | 7800 | 0.0399 | - |
296
+ | 1.0680 | 7850 | 0.0412 | - |
297
+ | 1.0748 | 7900 | 0.0341 | - |
298
+ | 1.0816 | 7950 | 0.0395 | - |
299
+ | 1.0884 | 8000 | 0.045 | - |
300
+ | 1.0952 | 8050 | 0.0385 | - |
301
+ | 1.1020 | 8100 | 0.038 | - |
302
+ | 1.1088 | 8150 | 0.0376 | - |
303
+ | 1.1156 | 8200 | 0.0434 | - |
304
+ | 1.1224 | 8250 | 0.0323 | - |
305
+ | 1.1293 | 8300 | 0.0364 | - |
306
+ | 1.1361 | 8350 | 0.033 | - |
307
+ | 1.1429 | 8400 | 0.025 | - |
308
+ | 1.1497 | 8450 | 0.0461 | - |
309
+ | 1.1565 | 8500 | 0.033 | - |
310
+ | 1.1633 | 8550 | 0.0317 | - |
311
+ | 1.1701 | 8600 | 0.047 | - |
312
+ | 1.1769 | 8650 | 0.0344 | - |
313
+ | 1.1837 | 8700 | 0.0388 | - |
314
+ | 1.1905 | 8750 | 0.0359 | - |
315
+ | 1.1973 | 8800 | 0.0429 | - |
316
+ | 1.2041 | 8850 | 0.0355 | - |
317
+ | 1.2109 | 8900 | 0.0421 | - |
318
+ | 1.2177 | 8950 | 0.0351 | - |
319
+ | 1.2245 | 9000 | 0.0359 | - |
320
+ | 1.2313 | 9050 | 0.035 | - |
321
+ | 1.2381 | 9100 | 0.0331 | - |
322
+ | 1.2449 | 9150 | 0.0337 | - |
323
+ | 1.2517 | 9200 | 0.0376 | - |
324
+ | 1.2585 | 9250 | 0.0366 | - |
325
+ | 1.2653 | 9300 | 0.0369 | - |
326
+ | 1.2721 | 9350 | 0.0353 | - |
327
+ | 1.2789 | 9400 | 0.0439 | - |
328
+ | 1.2857 | 9450 | 0.0439 | - |
329
+ | 1.2925 | 9500 | 0.0288 | - |
330
+ | 1.2993 | 9550 | 0.0404 | - |
331
+ | 1.3061 | 9600 | 0.0355 | - |
332
+ | 1.3129 | 9650 | 0.0375 | - |
333
+ | 1.3197 | 9700 | 0.0452 | - |
334
+ | 1.3265 | 9750 | 0.0408 | - |
335
+ | 1.3333 | 9800 | 0.0369 | - |
336
+ | 1.3401 | 9850 | 0.0337 | - |
337
+ | 1.3469 | 9900 | 0.0294 | - |
338
+ | 1.3537 | 9950 | 0.0341 | - |
339
+ | 1.3605 | 10000 | 0.0356 | - |
340
+ | 1.3673 | 10050 | 0.0394 | - |
341
+ | 1.3741 | 10100 | 0.0387 | - |
342
+ | 1.3810 | 10150 | 0.0276 | - |
343
+ | 1.3878 | 10200 | 0.0345 | - |
344
+ | 1.3946 | 10250 | 0.037 | - |
345
+ | 1.4014 | 10300 | 0.0272 | - |
346
+ | 1.4082 | 10350 | 0.0341 | - |
347
+ | 1.4150 | 10400 | 0.033 | - |
348
+ | 1.4218 | 10450 | 0.0517 | - |
349
+ | 1.4286 | 10500 | 0.0297 | - |
350
+ | 1.4354 | 10550 | 0.0388 | - |
351
+ | 1.4422 | 10600 | 0.0312 | - |
352
+ | 1.4490 | 10650 | 0.0283 | - |
353
+ | 1.4558 | 10700 | 0.0287 | - |
354
+ | 1.4626 | 10750 | 0.0319 | - |
355
+ | 1.4694 | 10800 | 0.0343 | - |
356
+ | 1.4762 | 10850 | 0.033 | - |
357
+ | 1.4830 | 10900 | 0.0444 | - |
358
+ | 1.4898 | 10950 | 0.0239 | - |
359
+ | 1.4966 | 11000 | 0.0294 | - |
360
+ | 1.5034 | 11050 | 0.0313 | - |
361
+ | 1.5102 | 11100 | 0.0344 | - |
362
+ | 1.5170 | 11150 | 0.0304 | - |
363
+ | 1.5238 | 11200 | 0.0339 | - |
364
+ | 1.5306 | 11250 | 0.0342 | - |
365
+ | 1.5374 | 11300 | 0.0291 | - |
366
+ | 1.5442 | 11350 | 0.0301 | - |
367
+ | 1.5510 | 11400 | 0.0309 | - |
368
+ | 1.5578 | 11450 | 0.0346 | - |
369
+ | 1.5646 | 11500 | 0.0406 | - |
370
+ | 1.5714 | 11550 | 0.034 | - |
371
+ | 1.5782 | 11600 | 0.0273 | - |
372
+ | 1.5850 | 11650 | 0.0316 | - |
373
+ | 1.5918 | 11700 | 0.0404 | - |
374
+ | 1.5986 | 11750 | 0.0295 | - |
375
+ | 1.6054 | 11800 | 0.0385 | - |
376
+ | 1.6122 | 11850 | 0.0373 | - |
377
+ | 1.6190 | 11900 | 0.0384 | - |
378
+ | 1.6259 | 11950 | 0.0307 | - |
379
+ | 1.6327 | 12000 | 0.0222 | - |
380
+ | 1.6395 | 12050 | 0.0257 | - |
381
+ | 1.6463 | 12100 | 0.0313 | - |
382
+ | 1.6531 | 12150 | 0.0293 | - |
383
+ | 1.6599 | 12200 | 0.0312 | - |
384
+ | 1.6667 | 12250 | 0.0299 | - |
385
+ | 1.6735 | 12300 | 0.0284 | - |
386
+ | 1.6803 | 12350 | 0.042 | - |
387
+ | 1.6871 | 12400 | 0.031 | - |
388
+ | 1.6939 | 12450 | 0.0295 | - |
389
+ | 1.7007 | 12500 | 0.0339 | - |
390
+ | 1.7075 | 12550 | 0.0385 | - |
391
+ | 1.7143 | 12600 | 0.0355 | - |
392
+ | 1.7211 | 12650 | 0.0291 | - |
393
+ | 1.7279 | 12700 | 0.0366 | - |
394
+ | 1.7347 | 12750 | 0.0337 | - |
395
+ | 1.7415 | 12800 | 0.0268 | - |
396
+ | 1.7483 | 12850 | 0.0373 | - |
397
+ | 1.7551 | 12900 | 0.0404 | - |
398
+ | 1.7619 | 12950 | 0.025 | - |
399
+ | 1.7687 | 13000 | 0.0282 | - |
400
+ | 1.7755 | 13050 | 0.0282 | - |
401
+ | 1.7823 | 13100 | 0.0341 | - |
402
+ | 1.7891 | 13150 | 0.0338 | - |
403
+ | 1.7959 | 13200 | 0.0342 | - |
404
+ | 1.8027 | 13250 | 0.035 | - |
405
+ | 1.8095 | 13300 | 0.0399 | - |
406
+ | 1.8163 | 13350 | 0.035 | - |
407
+ | 1.8231 | 13400 | 0.0367 | - |
408
+ | 1.8299 | 13450 | 0.0294 | - |
409
+ | 1.8367 | 13500 | 0.0382 | - |
410
+ | 1.8435 | 13550 | 0.0261 | - |
411
+ | 1.8503 | 13600 | 0.0301 | - |
412
+ | 1.8571 | 13650 | 0.0258 | - |
413
+ | 1.8639 | 13700 | 0.0301 | - |
414
+ | 1.8707 | 13750 | 0.0306 | - |
415
+ | 1.8776 | 13800 | 0.0242 | - |
416
+ | 1.8844 | 13850 | 0.0258 | - |
417
+ | 1.8912 | 13900 | 0.0296 | - |
418
+ | 1.8980 | 13950 | 0.0338 | - |
419
+ | 1.9048 | 14000 | 0.0315 | - |
420
+ | 1.9116 | 14050 | 0.0282 | - |
421
+ | 1.9184 | 14100 | 0.0325 | - |
422
+ | 1.9252 | 14150 | 0.0286 | - |
423
+ | 1.9320 | 14200 | 0.0355 | - |
424
+ | 1.9388 | 14250 | 0.0317 | - |
425
+ | 1.9456 | 14300 | 0.0314 | - |
426
+ | 1.9524 | 14350 | 0.031 | - |
427
+ | 1.9592 | 14400 | 0.03 | - |
428
+ | 1.9660 | 14450 | 0.0262 | - |
429
+ | 1.9728 | 14500 | 0.0275 | - |
430
+ | 1.9796 | 14550 | 0.0356 | - |
431
+ | 1.9864 | 14600 | 0.0369 | - |
432
+ | 1.9932 | 14650 | 0.0364 | - |
433
+ | 2.0 | 14700 | 0.0344 | - |
434
+ | 2.0068 | 14750 | 0.0248 | - |
435
+ | 2.0136 | 14800 | 0.0273 | - |
436
+ | 2.0204 | 14850 | 0.0282 | - |
437
+ | 2.0272 | 14900 | 0.023 | - |
438
+ | 2.0340 | 14950 | 0.0278 | - |
439
+ | 2.0408 | 15000 | 0.0355 | - |
440
+ | 2.0476 | 15050 | 0.0258 | - |
441
+ | 2.0544 | 15100 | 0.0258 | - |
442
+ | 2.0612 | 15150 | 0.0322 | - |
443
+ | 2.0680 | 15200 | 0.0266 | - |
444
+ | 2.0748 | 15250 | 0.0279 | - |
445
+ | 2.0816 | 15300 | 0.0282 | - |
446
+ | 2.0884 | 15350 | 0.0289 | - |
447
+ | 2.0952 | 15400 | 0.024 | - |
448
+ | 2.1020 | 15450 | 0.0268 | - |
449
+ | 2.1088 | 15500 | 0.0348 | - |
450
+ | 2.1156 | 15550 | 0.0281 | - |
451
+ | 2.1224 | 15600 | 0.0282 | - |
452
+ | 2.1293 | 15650 | 0.0218 | - |
453
+ | 2.1361 | 15700 | 0.0201 | - |
454
+ | 2.1429 | 15750 | 0.0207 | - |
455
+ | 2.1497 | 15800 | 0.0308 | - |
456
+ | 2.1565 | 15850 | 0.0261 | - |
457
+ | 2.1633 | 15900 | 0.0292 | - |
458
+ | 2.1701 | 15950 | 0.0308 | - |
459
+ | 2.1769 | 16000 | 0.0298 | - |
460
+ | 2.1837 | 16050 | 0.0308 | - |
461
+ | 2.1905 | 16100 | 0.0359 | - |
462
+ | 2.1973 | 16150 | 0.0265 | - |
463
+ | 2.2041 | 16200 | 0.0351 | - |
464
+ | 2.2109 | 16250 | 0.0223 | - |
465
+ | 2.2177 | 16300 | 0.0322 | - |
466
+ | 2.2245 | 16350 | 0.0261 | - |
467
+ | 2.2313 | 16400 | 0.0206 | - |
468
+ | 2.2381 | 16450 | 0.0384 | - |
469
+ | 2.2449 | 16500 | 0.0381 | - |
470
+ | 2.2517 | 16550 | 0.0238 | - |
471
+ | 2.2585 | 16600 | 0.0261 | - |
472
+ | 2.2653 | 16650 | 0.0323 | - |
473
+ | 2.2721 | 16700 | 0.0296 | - |
474
+ | 2.2789 | 16750 | 0.0256 | - |
475
+ | 2.2857 | 16800 | 0.0287 | - |
476
+ | 2.2925 | 16850 | 0.0272 | - |
477
+ | 2.2993 | 16900 | 0.0285 | - |
478
+ | 2.3061 | 16950 | 0.0245 | - |
479
+ | 2.3129 | 17000 | 0.0299 | - |
480
+ | 2.3197 | 17050 | 0.0193 | - |
481
+ | 2.3265 | 17100 | 0.0234 | - |
482
+ | 2.3333 | 17150 | 0.0308 | - |
483
+ | 2.3401 | 17200 | 0.0239 | - |
484
+ | 2.3469 | 17250 | 0.0309 | - |
485
+ | 2.3537 | 17300 | 0.0331 | - |
486
+ | 2.3605 | 17350 | 0.0316 | - |
487
+ | 2.3673 | 17400 | 0.0292 | - |
488
+ | 2.3741 | 17450 | 0.0337 | - |
489
+ | 2.3810 | 17500 | 0.0338 | - |
490
+ | 2.3878 | 17550 | 0.0288 | - |
491
+ | 2.3946 | 17600 | 0.031 | - |
492
+ | 2.4014 | 17650 | 0.0251 | - |
493
+ | 2.4082 | 17700 | 0.0288 | - |
494
+ | 2.4150 | 17750 | 0.0249 | - |
495
+ | 2.4218 | 17800 | 0.0281 | - |
496
+ | 2.4286 | 17850 | 0.0284 | - |
497
+ | 2.4354 | 17900 | 0.0268 | - |
498
+ | 2.4422 | 17950 | 0.0303 | - |
499
+ | 2.4490 | 18000 | 0.0233 | - |
500
+ | 2.4558 | 18050 | 0.0297 | - |
501
+ | 2.4626 | 18100 | 0.0265 | - |
502
+ | 2.4694 | 18150 | 0.0306 | - |
503
+ | 2.4762 | 18200 | 0.0286 | - |
504
+ | 2.4830 | 18250 | 0.0278 | - |
505
+ | 2.4898 | 18300 | 0.0254 | - |
506
+ | 2.4966 | 18350 | 0.0278 | - |
507
+ | 2.5034 | 18400 | 0.0257 | - |
508
+ | 2.5102 | 18450 | 0.0272 | - |
509
+ | 2.5170 | 18500 | 0.0297 | - |
510
+ | 2.5238 | 18550 | 0.0262 | - |
511
+ | 2.5306 | 18600 | 0.0309 | - |
512
+ | 2.5374 | 18650 | 0.0259 | - |
513
+ | 2.5442 | 18700 | 0.0212 | - |
514
+ | 2.5510 | 18750 | 0.026 | - |
515
+ | 2.5578 | 18800 | 0.0252 | - |
516
+ | 2.5646 | 18850 | 0.0228 | - |
517
+ | 2.5714 | 18900 | 0.0304 | - |
518
+ | 2.5782 | 18950 | 0.0278 | - |
519
+ | 2.5850 | 19000 | 0.0263 | - |
520
+ | 2.5918 | 19050 | 0.0305 | - |
521
+ | 2.5986 | 19100 | 0.0315 | - |
522
+ | 2.6054 | 19150 | 0.0288 | - |
523
+ | 2.6122 | 19200 | 0.0221 | - |
524
+ | 2.6190 | 19250 | 0.022 | - |
525
+ | 2.6259 | 19300 | 0.0299 | - |
526
+ | 2.6327 | 19350 | 0.0302 | - |
527
+ | 2.6395 | 19400 | 0.0282 | - |
528
+ | 2.6463 | 19450 | 0.0308 | - |
529
+ | 2.6531 | 19500 | 0.0306 | - |
530
+ | 2.6599 | 19550 | 0.0327 | - |
531
+ | 2.6667 | 19600 | 0.0284 | - |
532
+ | 2.6735 | 19650 | 0.0185 | - |
533
+ | 2.6803 | 19700 | 0.0248 | - |
534
+ | 2.6871 | 19750 | 0.0212 | - |
535
+ | 2.6939 | 19800 | 0.0254 | - |
536
+ | 2.7007 | 19850 | 0.0276 | - |
537
+ | 2.7075 | 19900 | 0.027 | - |
538
+ | 2.7143 | 19950 | 0.0261 | - |
539
+ | 2.7211 | 20000 | 0.0307 | - |
540
+ | 2.7279 | 20050 | 0.0225 | - |
541
+ | 2.7347 | 20100 | 0.0189 | - |
542
+ | 2.7415 | 20150 | 0.0325 | - |
543
+ | 2.7483 | 20200 | 0.0304 | - |
544
+ | 2.7551 | 20250 | 0.0351 | - |
545
+ | 2.7619 | 20300 | 0.0274 | - |
546
+ | 2.7687 | 20350 | 0.0318 | - |
547
+ | 2.7755 | 20400 | 0.0266 | - |
548
+ | 2.7823 | 20450 | 0.0211 | - |
549
+ | 2.7891 | 20500 | 0.0388 | - |
550
+ | 2.7959 | 20550 | 0.0245 | - |
551
+ | 2.8027 | 20600 | 0.0307 | - |
552
+ | 2.8095 | 20650 | 0.0346 | - |
553
+ | 2.8163 | 20700 | 0.0251 | - |
554
+ | 2.8231 | 20750 | 0.0289 | - |
555
+ | 2.8299 | 20800 | 0.0338 | - |
556
+ | 2.8367 | 20850 | 0.0228 | - |
557
+ | 2.8435 | 20900 | 0.0248 | - |
558
+ | 2.8503 | 20950 | 0.0176 | - |
559
+ | 2.8571 | 21000 | 0.0277 | - |
560
+ | 2.8639 | 21050 | 0.0312 | - |
561
+ | 2.8707 | 21100 | 0.0271 | - |
562
+ | 2.8776 | 21150 | 0.0251 | - |
563
+ | 2.8844 | 21200 | 0.0253 | - |
564
+ | 2.8912 | 21250 | 0.0304 | - |
565
+ | 2.8980 | 21300 | 0.0321 | - |
566
+ | 2.9048 | 21350 | 0.0223 | - |
567
+ | 2.9116 | 21400 | 0.0269 | - |
568
+ | 2.9184 | 21450 | 0.0326 | - |
569
+ | 2.9252 | 21500 | 0.0226 | - |
570
+ | 2.9320 | 21550 | 0.0347 | - |
571
+ | 2.9388 | 21600 | 0.0223 | - |
572
+ | 2.9456 | 21650 | 0.0256 | - |
573
+ | 2.9524 | 21700 | 0.0256 | - |
574
+ | 2.9592 | 21750 | 0.0322 | - |
575
+ | 2.9660 | 21800 | 0.0281 | - |
576
+ | 2.9728 | 21850 | 0.0318 | - |
577
+ | 2.9796 | 21900 | 0.0279 | - |
578
+ | 2.9864 | 21950 | 0.0303 | - |
579
+ | 2.9932 | 22000 | 0.0349 | - |
580
+ | 3.0 | 22050 | 0.0254 | - |
581
+ | 3.0068 | 22100 | 0.0185 | - |
582
+ | 3.0136 | 22150 | 0.0241 | - |
583
+ | 3.0204 | 22200 | 0.0285 | - |
584
+ | 3.0272 | 22250 | 0.0257 | - |
585
+ | 3.0340 | 22300 | 0.0247 | - |
586
+ | 3.0408 | 22350 | 0.023 | - |
587
+ | 3.0476 | 22400 | 0.0335 | - |
588
+ | 3.0544 | 22450 | 0.0302 | - |
589
+ | 3.0612 | 22500 | 0.0249 | - |
590
+ | 3.0680 | 22550 | 0.029 | - |
591
+ | 3.0748 | 22600 | 0.0312 | - |
592
+ | 3.0816 | 22650 | 0.0303 | - |
593
+ | 3.0884 | 22700 | 0.0225 | - |
594
+ | 3.0952 | 22750 | 0.0271 | - |
595
+ | 3.1020 | 22800 | 0.0275 | - |
596
+ | 3.1088 | 22850 | 0.0264 | - |
597
+ | 3.1156 | 22900 | 0.0202 | - |
598
+ | 3.1224 | 22950 | 0.0247 | - |
599
+ | 3.1293 | 23000 | 0.0292 | - |
600
+ | 3.1361 | 23050 | 0.0235 | - |
601
+ | 3.1429 | 23100 | 0.019 | - |
602
+ | 3.1497 | 23150 | 0.0247 | - |
603
+ | 3.1565 | 23200 | 0.0219 | - |
604
+ | 3.1633 | 23250 | 0.0217 | - |
605
+ | 3.1701 | 23300 | 0.0236 | - |
606
+ | 3.1769 | 23350 | 0.0223 | - |
607
+ | 3.1837 | 23400 | 0.0237 | - |
608
+ | 3.1905 | 23450 | 0.0307 | - |
609
+ | 3.1973 | 23500 | 0.0275 | - |
610
+ | 3.2041 | 23550 | 0.0192 | - |
611
+ | 3.2109 | 23600 | 0.0198 | - |
612
+ | 3.2177 | 23650 | 0.0322 | - |
613
+ | 3.2245 | 23700 | 0.0195 | - |
614
+ | 3.2313 | 23750 | 0.019 | - |
615
+ | 3.2381 | 23800 | 0.0266 | - |
616
+ | 3.2449 | 23850 | 0.0287 | - |
617
+ | 3.2517 | 23900 | 0.0205 | - |
618
+ | 3.2585 | 23950 | 0.025 | - |
619
+ | 3.2653 | 24000 | 0.0282 | - |
620
+ | 3.2721 | 24050 | 0.0261 | - |
621
+ | 3.2789 | 24100 | 0.0275 | - |
622
+ | 3.2857 | 24150 | 0.0273 | - |
623
+ | 3.2925 | 24200 | 0.0195 | - |
624
+ | 3.2993 | 24250 | 0.0265 | - |
625
+ | 3.3061 | 24300 | 0.0276 | - |
626
+ | 3.3129 | 24350 | 0.0277 | - |
627
+ | 3.3197 | 24400 | 0.0224 | - |
628
+ | 3.3265 | 24450 | 0.0231 | - |
629
+ | 3.3333 | 24500 | 0.0275 | - |
630
+ | 3.3401 | 24550 | 0.0333 | - |
631
+ | 3.3469 | 24600 | 0.0181 | - |
632
+ | 3.3537 | 24650 | 0.0266 | - |
633
+ | 3.3605 | 24700 | 0.0268 | - |
634
+ | 3.3673 | 24750 | 0.0177 | - |
635
+ | 3.3741 | 24800 | 0.0185 | - |
636
+ | 3.3810 | 24850 | 0.023 | - |
637
+ | 3.3878 | 24900 | 0.0281 | - |
638
+ | 3.3946 | 24950 | 0.0202 | - |
639
+ | 3.4014 | 25000 | 0.0206 | - |
640
+ | 3.4082 | 25050 | 0.0224 | - |
641
+ | 3.4150 | 25100 | 0.0275 | - |
642
+ | 3.4218 | 25150 | 0.0272 | - |
643
+ | 3.4286 | 25200 | 0.0221 | - |
644
+ | 3.4354 | 25250 | 0.0259 | - |
645
+ | 3.4422 | 25300 | 0.0244 | - |
646
+ | 3.4490 | 25350 | 0.034 | - |
647
+ | 3.4558 | 25400 | 0.0258 | - |
648
+ | 3.4626 | 25450 | 0.0271 | - |
649
+ | 3.4694 | 25500 | 0.0291 | - |
650
+ | 3.4762 | 25550 | 0.0204 | - |
651
+ | 3.4830 | 25600 | 0.0248 | - |
652
+ | 3.4898 | 25650 | 0.0225 | - |
653
+ | 3.4966 | 25700 | 0.0347 | - |
654
+ | 3.5034 | 25750 | 0.0243 | - |
655
+ | 3.5102 | 25800 | 0.031 | - |
656
+ | 3.5170 | 25850 | 0.024 | - |
657
+ | 3.5238 | 25900 | 0.0199 | - |
658
+ | 3.5306 | 25950 | 0.0278 | - |
659
+ | 3.5374 | 26000 | 0.0318 | - |
660
+ | 3.5442 | 26050 | 0.0267 | - |
661
+ | 3.5510 | 26100 | 0.027 | - |
662
+ | 3.5578 | 26150 | 0.0191 | - |
663
+ | 3.5646 | 26200 | 0.0233 | - |
664
+ | 3.5714 | 26250 | 0.0239 | - |
665
+ | 3.5782 | 26300 | 0.0203 | - |
666
+ | 3.5850 | 26350 | 0.0243 | - |
667
+ | 3.5918 | 26400 | 0.0246 | - |
668
+ | 3.5986 | 26450 | 0.0233 | - |
669
+ | 3.6054 | 26500 | 0.0364 | - |
670
+ | 3.6122 | 26550 | 0.0273 | - |
671
+ | 3.6190 | 26600 | 0.0269 | - |
672
+ | 3.6259 | 26650 | 0.0206 | - |
673
+ | 3.6327 | 26700 | 0.0316 | - |
674
+ | 3.6395 | 26750 | 0.023 | - |
675
+ | 3.6463 | 26800 | 0.0257 | - |
676
+ | 3.6531 | 26850 | 0.0263 | - |
677
+ | 3.6599 | 26900 | 0.0218 | - |
678
+ | 3.6667 | 26950 | 0.0257 | - |
679
+ | 3.6735 | 27000 | 0.0228 | - |
680
+ | 3.6803 | 27050 | 0.0256 | - |
681
+ | 3.6871 | 27100 | 0.0239 | - |
682
+ | 3.6939 | 27150 | 0.0225 | - |
683
+ | 3.7007 | 27200 | 0.0294 | - |
684
+ | 3.7075 | 27250 | 0.0187 | - |
685
+ | 3.7143 | 27300 | 0.02 | - |
686
+ | 3.7211 | 27350 | 0.0261 | - |
687
+ | 3.7279 | 27400 | 0.0201 | - |
688
+ | 3.7347 | 27450 | 0.0253 | - |
689
+ | 3.7415 | 27500 | 0.0265 | - |
690
+ | 3.7483 | 27550 | 0.0303 | - |
691
+ | 3.7551 | 27600 | 0.0239 | - |
692
+ | 3.7619 | 27650 | 0.0246 | - |
693
+ | 3.7687 | 27700 | 0.0249 | - |
694
+ | 3.7755 | 27750 | 0.023 | - |
695
+ | 3.7823 | 27800 | 0.0237 | - |
696
+ | 3.7891 | 27850 | 0.0197 | - |
697
+ | 3.7959 | 27900 | 0.0268 | - |
698
+ | 3.8027 | 27950 | 0.0246 | - |
699
+ | 3.8095 | 28000 | 0.029 | - |
700
+ | 3.8163 | 28050 | 0.0248 | - |
701
+ | 3.8231 | 28100 | 0.0275 | - |
702
+ | 3.8299 | 28150 | 0.0241 | - |
703
+ | 3.8367 | 28200 | 0.027 | - |
704
+ | 3.8435 | 28250 | 0.0252 | - |
705
+ | 3.8503 | 28300 | 0.0245 | - |
706
+ | 3.8571 | 28350 | 0.0241 | - |
707
+ | 3.8639 | 28400 | 0.0264 | - |
708
+ | 3.8707 | 28450 | 0.0233 | - |
709
+ | 3.8776 | 28500 | 0.0319 | - |
710
+ | 3.8844 | 28550 | 0.0236 | - |
711
+ | 3.8912 | 28600 | 0.0277 | - |
712
+ | 3.8980 | 28650 | 0.0178 | - |
713
+ | 3.9048 | 28700 | 0.0209 | - |
714
+ | 3.9116 | 28750 | 0.0263 | - |
715
+ | 3.9184 | 28800 | 0.0236 | - |
716
+ | 3.9252 | 28850 | 0.0216 | - |
717
+ | 3.9320 | 28900 | 0.0209 | - |
718
+ | 3.9388 | 28950 | 0.0283 | - |
719
+ | 3.9456 | 29000 | 0.0307 | - |
720
+ | 3.9524 | 29050 | 0.0276 | - |
721
+ | 3.9592 | 29100 | 0.0277 | - |
722
+ | 3.9660 | 29150 | 0.031 | - |
723
+ | 3.9728 | 29200 | 0.0304 | - |
724
+ | 3.9796 | 29250 | 0.0332 | - |
725
+ | 3.9864 | 29300 | 0.0277 | - |
726
+ | 3.9932 | 29350 | 0.0233 | - |
727
+ | 4.0 | 29400 | 0.0237 | - |
728
+
729
+ ### Framework Versions
730
+ - Python: 3.11.13
731
+ - SetFit: 1.1.2
732
+ - Sentence Transformers: 4.1.0
733
+ - Transformers: 4.52.4
734
+ - PyTorch: 2.6.0+cu124
735
+ - Datasets: 3.6.0
736
+ - Tokenizers: 0.21.1
737
+
738
+ ## Citation
739
+
740
+ ### BibTeX
741
+ ```bibtex
742
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
743
+ doi = {10.48550/ARXIV.2209.11055},
744
+ url = {https://arxiv.org/abs/2209.11055},
745
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
746
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
747
+ title = {Efficient Few-Shot Learning Without Prompts},
748
+ publisher = {arXiv},
749
+ year = {2022},
750
+ copyright = {Creative Commons Attribution 4.0 International}
751
+ }
752
+ ```
753
+
754
+ <!--
755
+ ## Glossary
756
+
757
+ *Clearly define terms in order to be accessible across audiences.*
758
+ -->
759
+
760
+ <!--
761
+ ## Model Card Authors
762
+
763
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
764
+ -->
765
+
766
+ <!--
767
+ ## Model Card Contact
768
+
769
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
770
+ -->
config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "classifier_dropout": null,
7
+ "gradient_checkpointing": false,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 1536,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 12,
18
+ "pad_token_id": 0,
19
+ "position_embedding_type": "absolute",
20
+ "torch_dtype": "float32",
21
+ "transformers_version": "4.52.4",
22
+ "type_vocab_size": 2,
23
+ "use_cache": true,
24
+ "vocab_size": 250037
25
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "4.1.0",
4
+ "transformers": "4.52.4",
5
+ "pytorch": "2.6.0+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "normalize_embeddings": false,
3
+ "labels": null
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:91a1ba85d509144e1a92b030851961f13da87026dc45debdfe1415138d820190
3
+ size 470637416
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a69dc78b0ee485e09759961299f2ded8ae9b31be35dac27ae9c5e502ccab9e07
3
+ size 168004
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cad551d5600a84242d0973327029452a1e3672ba6313c2a3c3d69c4310e12719
3
+ size 17082987
tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "<s>",
47
+ "do_lower_case": true,
48
+ "eos_token": "</s>",
49
+ "extra_special_tokens": {},
50
+ "mask_token": "<mask>",
51
+ "max_length": 128,
52
+ "model_max_length": 128,
53
+ "pad_to_multiple_of": null,
54
+ "pad_token": "<pad>",
55
+ "pad_token_type_id": 0,
56
+ "padding_side": "right",
57
+ "sep_token": "</s>",
58
+ "stride": 0,
59
+ "strip_accents": null,
60
+ "tokenize_chinese_chars": true,
61
+ "tokenizer_class": "BertTokenizer",
62
+ "truncation_side": "right",
63
+ "truncation_strategy": "longest_first",
64
+ "unk_token": "<unk>"
65
+ }
unigram.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da145b5e7700ae40f16691ec32a0b1fdc1ee3298db22a31ea55f57a966c4a65d
3
+ size 14763260