lgsilvaesilva commited on
Commit
a312493
·
verified ·
1 Parent(s): cb30bd8

Push model using huggingface_hub.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,239 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - setfit
4
+ - sentence-transformers
5
+ - text-classification
6
+ - generated_from_setfit_trainer
7
+ widget:
8
+ - text: WHO and UNICEF has recommended that a child should receive the minimum dietary
9
+ diversity (MDD) of foods and beverages from at least five out of eight defined
10
+ food groups to maintain proper growth and development during this critical period
11
+ 19 . In Timor-Leste, 35.3% received minimum dietary diversity (MDD) 4 . On the
12
+ other hand, the proportion of children 6-23 months receiving MDD has been on the
13
+ upward rise (28% in 2013 to 35.3% in 2020) although it is still low. Food group
14
+ diversity is associated with improved linear growth in young children20 . A diet
15
+ lacking in diversity can increase the risk of micronutrient deficiencies, which
16
+ may have a damaging effect on 47.0% 81.7% 93.4% 75.2% 30.7% 57.5% 62.3% 50.2%
17
+ 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% TLDHS 2003 TLDHS 2010 TLFNS 2013 TLFNS
18
+ 2016 46.8% 64.2% TLFNS 2020 Early Initiation (1 hour) Exclusive breastfeeding
19
+ (0-5 months) 20NATIONAL HEALTH SECTOR NUTRITION STRATEGIC PLAN 2022-2026 children’s
20
+ physical and cognitive development21 . Consequently, TLFNS 2020 reported that
21
+ a very high proportion of children 6-23 months had consumed grains, roots, and
22
+ tubers (97.5%) and breast milk (90.6%), as well as vitamin A-rich fruits and vegetables
23
+ (71.5%). Consumption of dairy products (0.8%) was low, while consumption of flesh
24
+ foods (23.1%) and legumes or nuts (31.0%) was also relatively low. The 2020 survey
25
+ reported that 19.1% of children 6-23 months consumed sugar sweetened beverages,
26
+ 31.0% consumed sweet or savoury junk foods, while 20.0% did not consume any fruits
27
+ or vegetables and 35.9% consumed no eggs or flesh foods.
28
+ - text: Climate Risk and Vulnerability Baseline. One of the key roles of the NAP process
29
+ is to develop a common evidence base on CC that can be referenced by stakeholders
30
+ in various documents, including strategies and project proposals. Therefore, climate
31
+ risk and vulnerability assessments shall be summarized and updated on a periodical
32
+ basis to underlie the development of the NAP and the list of m
33
+ - text: 'Agriculture in Armenia has always been remarkable with the high level of
34
+ climate risks (hail damage, frost damage, drought, etc.). As it is already mentioned,
35
+ agriculture has suffered losses from natural disasters worth of AMD 110 billion
36
+ during the recent 6 years. Climate risks in Armenia are a serious problem since
37
+ there are no clearly formed such state, political or institutional mechanisms,
38
+ the application of which would make it possible to noticeably mitigate the existing
39
+ risks. Due to the lack of such mechanisms, the mechanism of full assessment of
40
+ the agricultural losses does not work too, as well as the risks are not assessed
41
+ in advance. In this context, to reduce the agricultural risks, to introduce loss
42
+ compensation mechanisms in a systemized way, and to provide sustainable income
43
+ levels for economic entities, it is necessary to address the critical issue of
44
+ agricultural risk insurance. '
45
+ - text: 'Strategy 6.3: Strengthen monitoring, evaluation and surveillance systems
46
+ for routine information sharing and data utilization at all levels Activities
47
+ Stakeholder Conduct bi-annual nutrition M&E coordination meetings. ND, M&ED, INS
48
+ Collaborate with HIS Department (HISD) and M&E Department MOH to conduct routine
49
+ nutrition data quality assessments and audits (RDQA). ND, HISD, M&ED, INS In collaboration
50
+ with HISD MOH and M&E Department, train M&E officers, DPHO nutrition, nutrition
51
+ focal points and Municipality Health Services on data management (collection analyses,
52
+ interpreting and reporting) at all levels. ND, HISD, M&ED, INS Develop and disseminate
53
+ the Nutrition M&E Plan. ND, M&ED Strengthen the nutrition information system within
54
+ the HMIS by integrating key nutrition indicators and databases. ND, HISD, M&ED
55
+ Establish and scale up a nutrition surveillance system for real time monitoring
56
+ at all levels. ND, M&ED, INS Conduct mid-term and end-term evaluation of the nutrition
57
+ strategic plan. ND, HISD, M&ED, INS Conduct a food and nutrition survey every
58
+ 5 years. ND, HISD, M&ED, INS Conduct knowledge attitude and practices (KAP) survey
59
+ on nutrition. ND, HISD, M&ED, HPD, INS Liaise with HMIS to introduce real-time
60
+ data collection linked to DHIS2. ND, HISD, M&ED Periodic publishing of nutrition
61
+ bulletin/report ND, HISD, M&ED Develop and regularly review nutrition indicators
62
+ monitoring and evaluation guideline. ND, HMIS, M&ED, INS '
63
+ - text: Provision 1 - Access to safe nutritious food for all The package will be aimed
64
+ at ending hunger and all forms of malnutrition and reduce the incidence of non-communicable
65
+ diseases, enabling all people to be nourished and healthy. This suggests that
66
+ all people at all times have access to sufficient quantities of affordable and
67
+ safe foo
68
+ metrics:
69
+ - accuracy
70
+ pipeline_tag: text-classification
71
+ library_name: setfit
72
+ inference: false
73
+ base_model: sentence-transformers/paraphrase-mpnet-base-v2
74
+ ---
75
+
76
+ # SetFit with sentence-transformers/paraphrase-mpnet-base-v2
77
+
78
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A OneVsRestClassifier instance is used for classification.
79
+
80
+ The model has been trained using an efficient few-shot learning technique that involves:
81
+
82
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
83
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
84
+
85
+ ## Model Details
86
+
87
+ ### Model Description
88
+ - **Model Type:** SetFit
89
+ - **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
90
+ - **Classification head:** a OneVsRestClassifier instance
91
+ - **Maximum Sequence Length:** 512 tokens
92
+ <!-- - **Number of Classes:** Unknown -->
93
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
94
+ <!-- - **Language:** Unknown -->
95
+ <!-- - **License:** Unknown -->
96
+
97
+ ### Model Sources
98
+
99
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
100
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
101
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
102
+
103
+ ## Uses
104
+
105
+ ### Direct Use for Inference
106
+
107
+ First install the SetFit library:
108
+
109
+ ```bash
110
+ pip install setfit
111
+ ```
112
+
113
+ Then you can load this model and run inference.
114
+
115
+ ```python
116
+ from setfit import SetFitModel
117
+
118
+ # Download from the 🤗 Hub
119
+ model = SetFitModel.from_pretrained("faodl/setfit-paraphrase-mpnet-base-v2-5ClassesDesc-multilabel-augmented")
120
+ # Run inference
121
+ preds = model("Provision 1 - Access to safe nutritious food for all The package will be aimed at ending hunger and all forms of malnutrition and reduce the incidence of non-communicable diseases, enabling all people to be nourished and healthy. This suggests that all people at all times have access to sufficient quantities of affordable and safe foo")
122
+ ```
123
+
124
+ <!--
125
+ ### Downstream Use
126
+
127
+ *List how someone could finetune this model on their own dataset.*
128
+ -->
129
+
130
+ <!--
131
+ ### Out-of-Scope Use
132
+
133
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
134
+ -->
135
+
136
+ <!--
137
+ ## Bias, Risks and Limitations
138
+
139
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
140
+ -->
141
+
142
+ <!--
143
+ ### Recommendations
144
+
145
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
146
+ -->
147
+
148
+ ## Training Details
149
+
150
+ ### Training Set Metrics
151
+ | Training set | Min | Median | Max |
152
+ |:-------------|:----|:--------|:-----|
153
+ | Word count | 6 | 93.5916 | 1014 |
154
+
155
+ ### Training Hyperparameters
156
+ - batch_size: (8, 8)
157
+ - num_epochs: (1, 1)
158
+ - max_steps: -1
159
+ - sampling_strategy: oversampling
160
+ - num_iterations: 20
161
+ - body_learning_rate: (2e-05, 2e-05)
162
+ - head_learning_rate: 2e-05
163
+ - loss: CosineSimilarityLoss
164
+ - distance_metric: cosine_distance
165
+ - margin: 0.25
166
+ - end_to_end: False
167
+ - use_amp: False
168
+ - warmup_proportion: 0.1
169
+ - l2_weight: 0.01
170
+ - seed: 42
171
+ - eval_max_steps: -1
172
+ - load_best_model_at_end: False
173
+
174
+ ### Training Results
175
+ | Epoch | Step | Training Loss | Validation Loss |
176
+ |:------:|:----:|:-------------:|:---------------:|
177
+ | 0.0010 | 1 | 0.3063 | - |
178
+ | 0.0524 | 50 | 0.2204 | - |
179
+ | 0.1047 | 100 | 0.1689 | - |
180
+ | 0.1571 | 150 | 0.1464 | - |
181
+ | 0.2094 | 200 | 0.1236 | - |
182
+ | 0.2618 | 250 | 0.1088 | - |
183
+ | 0.3141 | 300 | 0.0649 | - |
184
+ | 0.3665 | 350 | 0.0697 | - |
185
+ | 0.4188 | 400 | 0.0395 | - |
186
+ | 0.4712 | 450 | 0.052 | - |
187
+ | 0.5236 | 500 | 0.0263 | - |
188
+ | 0.5759 | 550 | 0.0376 | - |
189
+ | 0.6283 | 600 | 0.0307 | - |
190
+ | 0.6806 | 650 | 0.022 | - |
191
+ | 0.7330 | 700 | 0.0162 | - |
192
+ | 0.7853 | 750 | 0.012 | - |
193
+ | 0.8377 | 800 | 0.0135 | - |
194
+ | 0.8901 | 850 | 0.0173 | - |
195
+ | 0.9424 | 900 | 0.0171 | - |
196
+ | 0.9948 | 950 | 0.0117 | - |
197
+
198
+ ### Framework Versions
199
+ - Python: 3.11.11
200
+ - SetFit: 1.1.1
201
+ - Sentence Transformers: 3.4.1
202
+ - Transformers: 4.50.2
203
+ - PyTorch: 2.6.0+cu124
204
+ - Datasets: 3.5.0
205
+ - Tokenizers: 0.21.1
206
+
207
+ ## Citation
208
+
209
+ ### BibTeX
210
+ ```bibtex
211
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
212
+ doi = {10.48550/ARXIV.2209.11055},
213
+ url = {https://arxiv.org/abs/2209.11055},
214
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
215
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
216
+ title = {Efficient Few-Shot Learning Without Prompts},
217
+ publisher = {arXiv},
218
+ year = {2022},
219
+ copyright = {Creative Commons Attribution 4.0 International}
220
+ }
221
+ ```
222
+
223
+ <!--
224
+ ## Glossary
225
+
226
+ *Clearly define terms in order to be accessible across audiences.*
227
+ -->
228
+
229
+ <!--
230
+ ## Model Card Authors
231
+
232
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
233
+ -->
234
+
235
+ <!--
236
+ ## Model Card Contact
237
+
238
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
239
+ -->
config.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "MPNetModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "bos_token_id": 0,
7
+ "eos_token_id": 2,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 768,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 3072,
13
+ "layer_norm_eps": 1e-05,
14
+ "max_position_embeddings": 514,
15
+ "model_type": "mpnet",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 12,
18
+ "pad_token_id": 1,
19
+ "relative_attention_num_buckets": 32,
20
+ "torch_dtype": "float32",
21
+ "transformers_version": "4.50.2",
22
+ "vocab_size": 30527
23
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.1",
4
+ "transformers": "4.50.2",
5
+ "pytorch": "2.6.0+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "labels": null,
3
+ "normalize_embeddings": false
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:04d6ceae9b70c72baa901f943e56a02f98687e400617d75b7a05bc8990278de0
3
+ size 437967672
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e85c4e75ac7782b69e3976c939a2639860f69fa5084c12053213877793861bff
3
+ size 33412
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "104": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "30526": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "<s>",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": true,
49
+ "eos_token": "</s>",
50
+ "extra_special_tokens": {},
51
+ "mask_token": "<mask>",
52
+ "model_max_length": 512,
53
+ "never_split": null,
54
+ "pad_token": "<pad>",
55
+ "sep_token": "</s>",
56
+ "strip_accents": null,
57
+ "tokenize_chinese_chars": true,
58
+ "tokenizer_class": "MPNetTokenizer",
59
+ "unk_token": "[UNK]"
60
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff