model
Browse files- .gitattributes +1 -0
- README.md +40 -0
- config.json +1 -0
- humanoid-v5-TQC-medium.zip +3 -0
- humanoid-v5-TQC-medium/_stable_baselines3_version +1 -0
- humanoid-v5-TQC-medium/actor.optimizer.pth +3 -0
- humanoid-v5-TQC-medium/critic.optimizer.pth +3 -0
- humanoid-v5-TQC-medium/data +126 -0
- humanoid-v5-TQC-medium/ent_coef_optimizer.pth +3 -0
- humanoid-v5-TQC-medium/policy.pth +3 -0
- humanoid-v5-TQC-medium/pytorch_variables.pth +3 -0
- humanoid-v5-TQC-medium/system_info.txt +8 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- Humanoid-v5
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: TQC
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: Humanoid-v5
|
16 |
+
type: Humanoid-v5
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 8021.95 +/- 912.19
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **TQC** Agent playing **Humanoid-v5**
|
25 |
+
|
26 |
+
This is a trained model of a **TQC** agent playing **Humanoid-v5**
|
27 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
28 |
+
|
29 |
+
|
30 |
+
## Usage (with Stable-baselines3)
|
31 |
+
|
32 |
+
TODO: Add your code
|
33 |
+
|
34 |
+
|
35 |
+
```python
|
36 |
+
from stable_baselines3 import ...
|
37 |
+
from huggingface_sb3 import load_from_hub
|
38 |
+
|
39 |
+
...
|
40 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVKgAAAAAAAACMGHNiM19jb250cmliLnRxYy5wb2xpY2llc5SMCVRRQ1BvbGljeZSTlC4=", "__module__": "sb3_contrib.tqc.policies", "__annotations__": "{'actor': <class 'sb3_contrib.tqc.policies.Actor'>, 'critic': <class 'sb3_contrib.tqc.policies.Critic'>, 'critic_target': <class 'sb3_contrib.tqc.policies.Critic'>}", "__doc__": "\n Policy class (with both actor and critic) for TQC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the feature extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_quantiles: Number of quantiles for the critic.\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ", "__init__": "<function TQCPolicy.__init__ at 0x7faa74b97f60>", "_build": "<function TQCPolicy._build at 0x7faa74bc0040>", "_get_constructor_parameters": "<function TQCPolicy._get_constructor_parameters at 0x7faa74bc00e0>", "reset_noise": "<function TQCPolicy.reset_noise at 0x7faa74bc0180>", "make_actor": "<function TQCPolicy.make_actor at 0x7faa74bc0220>", "make_critic": "<function TQCPolicy.make_critic at 0x7faa74bc02c0>", "forward": "<function TQCPolicy.forward at 0x7faa74bc0360>", "_predict": "<function TQCPolicy._predict at 0x7faa74bc0400>", "set_training_mode": "<function TQCPolicy.set_training_mode at 0x7faa74bc04a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7faa74ba2240>"}, "verbose": 0, "policy_kwargs": {"use_sde": false}, "num_timesteps": 4950000, "_total_timesteps": 5000000, "_num_timesteps_at_start": 0, "seed": 0, "action_noise": null, "start_time": 1739143247756297255, "learning_rate": 0.0003, "tensorboard_log": "runs/0", "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWV1jYAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZgNgAAAAAAAG3l8x8IS/Q/NuWxb4Yh6j8j6J3YQfCuv8B9/dwrYKS/7rjqGD9T4j+X7jVUsYvkv7xAoG7rl8q/FSFw1U/Ttj/w/0KD1/eJv5cWSUYc7su/b+ZT07ri2j+e8Zbjz/y3P4CuqEkSo7E/Z8Y0WC425D937kJTizTKP3L0N0i+/OC/hR7OjRPc979dVJEtNOzwPy1nhClr/fa/dgJdTE3M8L+mUSMJrFDWv8bqzOX3IOw/HB3VV2YPB0CyDjKjZWWYPwxt0PWhhdI/h6/PVR4W5b81z19rjo7tvxK3pKkyJ6A/+O9IGUhIDEDsljYYTmIKQMinr2BbuQNAQ/hVv6sf8T/oWZAzlvETQPrxrqI1W/e/qq45TGz0878Chp2Y6SjnvwwExWi5A7s/WB2/MwylH8BcMSqBKcQEwBaiyjDdec2/PC4mle5z4b98mkgUOLnfPxP/BHvtk6o/evkBcIOO5j9uN/elByeav/ug4cxdXABAIUtEPkWkAEBoSzHzOt6zP5y75llqTHu/laOMmLZ2zj8xPoZgrLC7P5yIi3K8Nd+/XjtaPvhX0L/KtxD9B2IQQAscZ+ie0CFAgTBRFl0StD+JwZS5nFuyP+5zLDZLJI0/DuHhNOYEYT9KpNbFNmtiP/n4xwNE9ZE/bS3gKIiLj7/0Mgj4Kme5vxYzkzPgudg//QtahHcYAkDoNoA9du6qP1pYGZwoAaM/kpFOC+2JsD/fvIIuywSTP0pz5UnxYlq/nIps+0anZD9b5RjmJj7DP3sAtRwwDs+/r8+mKf9RqT+65PaX+3YaQNuiuYWG7tI/KT1LOTnt0T+CpffIHYC3P+/V5lgaqaQ/tf/lKZEHsT88ijWpqam3v1Ms8gNHQ9k/fyV40RAV37+QfHwMvfXsv3zX1/7KARNAXrmPynbE7j8KYp1JSxTuP1VFxL/puqM/EgpJ/mmsjD+Otemm4+izP/zyvBkoccS/k/onpFmiwT+csUW+TenRv8GnCapJNPm/XiGebqoLBkDlDWTXrizxP3EgzgJf8vA/v21QKxZxmT8Sy25dfEB/P/qY4BixPa4/a5HeGodkwb/IlHv/K5mzP8DN03Mdi8a/RTW4ZG/Q9b+7ssy+Okb8P+DtyYN1LdI/zqAE2rGY0D9Scm74Z82hP1NWAe2ohWq/LtAi5gKPjD9OEwI8apKyP9/pvc015KM/DnNeM1U31j/vTSIHhPLtv3zX1/7KARNAeOTrIC+q7T+om9yUswntP3aR03T2R6Y/+e/EK3C2iz8y2gn4Hv2zv1bLbjT05MQ/7toqozp7vr9r63GG7E7SP9Mk24rtxfi/XiGebqoLBkCpqntvDxHwPwIc7Me5GfA/xqnyQ0Jdrj+1ubSVzU6cP76vO9+RZ8W/2fnRjOiZxD+OdPENYdbMv09U1/pMwcs/4CdzI5P89L+7ssy+Okb8P5Xy5b1CzOM/hYbrmFZg5D/SOi+EYz+iP+ERGKp6ena/9bVpbP8rwL+gt2w3R3uZvzbQvt/Vfco/vy82XMRFnj8j2A61QALwP352ZiHJk/o/hbgxcybj7D/UUjh22TzpPzVPQWJ7/sM/ikkZkbcCqb9nUeTZ/u+/v2b4StSN/NO/I4EtCG9XxD9z/+NSFfjYP8zGEByFC+8/fTtVVjKs8z+SMMU3jdbPP1VlhuumIdE/sCRA7y5Gpj+o+Y+U/5+IP5HkI/99eLQ/DwYHuvsNp78BSK8/dUfJv8tyMfr+i8A/1XY4owrG4z9+dmYhyZP6P+6jWRYnac8/1BXUPhBJzz9R3Q3KHUWgP8+OwBO1PIo/UOnmPAK5rD/DinnM656tv6L9xsyjhL6/t8PEDt7mwT95a25vU57gP307VVYyrPM/n/3p+pou5D+WOfQgD7ztvyoI5nDdVMU/+ilhBI8vCkBfNQ8q4DnTP9zvP7h4ltY/PQb7+1Mn+r8FGZ4rWOL/PxwtfcT7SApAapNfuleMA0CKohUBa2LCv2/H6fYBSsU/gOMijKTZ0j+s+e0c+sUKQE7m1PL/BRBA6wpT9pwjAkBIyuV+pF+tP7DDZaElqNA/0rk5WB+n1z9H9QkCbOX+P/hjEQsiGSJAiDJB5duF+z+Wxw44+23evz/l134RbL4/8Mu+VhNHu7+Ec8vz+7QIQDcdPjHjJiJASRrV4H11AUAYJQ0oiUjSv8vUtMBzK8E/8Mu+VhNHu7+Ec8vz+7QIQDcdPjHjJiJASRrV4H11AUAYJQ0oiUjSv8vUtMBzK8E/LsQufvl25z8KGKymkXwQwOvgGB2k9ApAwZilTFwmAEDWHDG0mn2kP0MgjzBIt9I/K0rLAEYp6T/iRGjTp5b4v3J2hhFs7AxAdDVahUPFCEDWYQMVc0iHP8SIjFwlH9c/K0rLAEYp6T/iRGjTp5b4v3J2hhFs7AxAdDVahUPFCEDWYQMVc0iHP8SIjFwlH9c/7RiniLpT8T+29c3t4b7uv/6VBwSEP8u/avHX4meQCkBpNPrz3jXiP9zq7TlEw9g/gVu6m1OJ5j/gyVUbdQLyv/DP6FT3NK8/FIezEv7SC0AOFggc1U3QP1chstK7mNo/aFRV/ThTzj/2xIu+WXHXv4Ak6rayBVu/HSqnDbYRCED6fZTyKje1P5UpH4O2R88/hy83ILRbzD9szDa0BzjWv85v4yNdmoG/diZa6owFCEC+Za1DlDC0P1S/uaqsjM8/AAAAVOToL0AAAAArJdBBwAAAAP1mq0NAAAAAY9wgQ8AAAAD1QN5DQAAAAPVpNkBAAAAAub5WU0AAAAAH+KxCQAAAANhOfh5AAACA1PYiWcAAAADQUs0kQAAAAAfM6SDAAAAA5MyVCEAAAAA02jkCQAAAAA8dwSLAAAAAZA+IHcAAAABi+7sdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALUF3pz3elPAIHRINUC6NkDjCSDZZ7YawJiBKaQxslHA0CjC+6lhIUC29hzM+7uKQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOwhpB4qSfQ/jtrMol306z+b2RUdnW2tv+lDL8+NebO/l+LHhUOL3j9kMbz2PbHZv5gB0PmiyMe/mJHorygFkr/+CKaeEuVwv9fmcI44F+W/HH1IcN692z8rYYyEh2++v+1xaafllq6/gtC/5DRK5D93uxBXF/DEP7n7fpRaNea/8/RTRc729b+xWGKhwk7sP84f8UFKNfm//kxrozrI8L/G90ycUXLsv2yPclStEew/Zb9/dhhpCkDiBPOTR4u4P+vboD9/RMu/gxmr133S8r9eToRoa3cGwKWodUjS6fW/552/IxkU8D+mxv0qwiEcQD5NOVsGhg5AbfXfVoA/DECNUW3rL28cQCs0sf7o6tG/olOFvsSeNkDM7tTUI0zqP01Aly5PZNK/PBHcN9MtI8D1khxlGTEmwJwdJRobwxlABm97pTFPAkBvsFkhWGJxP9X2JL3IW3M/ahgd7OeH2L+q8qyv+JpiPzPIXtI1//4/+RQfqn3i/z/oGrK3X4G8P62VL7FR746/jbD70z9P1T8CUT2Dh1TBP6nfHA3Heua/Vv7RBccd1L+oJl7KCcQPQAscZ+ie0CFAv9onXAKzsT99tJuhQTuwPwyrkkGEBI4/rEhvIx/kUD+/8AsLFKx4PxG/F+B1cZA/fpebXsbQpL/ktCcUhN64vxf7Kj17+dY//QtahHcYAkDuyKaSxZusP7UNzFPR36I/umcP8SEzsT93lpFLvpiTP22myVWq+V2/BY65DbPHZT/c3UBgk73DP5jVnfD069G/ONVWfMkPkL+65PaX+3YaQF4H9Hb//tE/Nmci0iUl0j/+AQZf84O3PxDR7y/fXaU/mOHMFH1btD9tn+sOPuqyv+t+Oj29zdw/3uStTePS279naYoLcn3sv3zX1/7KARNAF+DsmyRj7T986A4H8FrtP6gZAwYVxpI/sRMVSCwefj9TZXCPkiuxPzTPeI1am7S/PLuKl+hywD+1cBFvjdHCvx6m9ofG5vi/XiGebqoLBkCSSO2mXnHwP2FJ9lulaPA/xmSdFEkEej/acV8WLT5BP4GpQCel8oY/TaqmHXSPqL+PHJQ3+S6OP7PaUtr4JrC/t/evYBB/9b+7ssy+Okb8P0t6H/mpNdQ/7yu/w1z70j9E1/oLU7eiP8WwigcJ04K/psForQA9oj/fCOmAzs2zP5lWAhtyIb4/9wI08no+1T9llPeyLVXwv3zX1/7KARNA1A5Gy1hp7j9sWJcVOa/tP9HmKAMDaKc/AD+73GaQhD8pesGLam2tvwaPyoQxE8Y/F/6hplsUtL/gvcaN2xjTPyWrxWjRGfm/XiGebqoLBkDaFPwHXwTwPzI11ReOB/A/QUg0i3Q/sD+c8kilF3WePxaapMfK28W/emohoyaTxT96CMf7tInNvznK4KOLJ80/e3mYymns9L+7ssy+Okb8P+7slSVtEuQ/lkl+dt+S5D8E+P8Dhm2hPwGM//WpbH0/PrnfIymlvr897g5zdb+oPyDncj4zWcg/O5I5dqnQtr8rNDd+qhfwP352ZiHJk/o/86yBOKRZ7j8pcMGycPnuP+SjTBzRorw/LyVi5w22qr/6FIEBRBHPv0tmCDakjsi/ErStBuEL0j9IZnmSLdjLP/4WZ7WPzfA/fTtVVjKs8z/4D1IWqCnVP/zrs+edYtU/O4S3MJYOqz84SoN7Y3yKP2VaF9gA17E/x0Y6CHyztL8HcuSwGXHEvzs8f3OwTsg/GT60jPTI5j9+dmYhyZP6P58xj7LlqtQ/Gz9/brC11D/4h6GQGQSnP3wf+Jti6oo/NIot0iIEsT8swHscl8Szv7lm8hJKDMC/zQTYf8h4xD9U4WY5ImDjP307VVYyrPM/MpAuH6cn/z/NKsuQrlEEwGbDl43Aau6/uPOdbxaFEUAiSJ7QSJPqP4ACKIsWQaE/Ogwh6eD4AMB7Xydqxj8KQA4Yye4Umuu/PFOsgorGCECQIYgu26Ouv2bTKwLRPNm/jGxv/IEn6T8xqi+uk6wVQOgE0B31Wdg/AjuVYMG6BkDiz05TWBbMPwpnkSodr9G/LTJOFITw7j+QJPadN6EaQJiy/ZbLUiBAMeMdb0QCAEBnn0YYnL/jv+MJi+scpL+/OErR9s4mwj++1IifEb8vwG8khzqPKBlA1t/VLexnG8BKAFpi7uzBv2LN5OScbP+/OErR9s4mwj++1IifEb8vwG8khzqPKBlA1t/VLexnG8BKAFpi7uzBv2LN5OScbP+/Qotsj0RAuz/Uhll9LVsSwLbNxqkyRem/+Da9dCJpAkCRSb4czOzPP/De2ihIDsy/s3yQBq+brj8wnvrB4KwZQO7zZNFUJeI/Mi64Ug5gHEBZaCG9s1PIP/ytRrlVWNs/s3yQBq+brj8wnvrB4KwZQO7zZNFUJeI/Mi64Ug5gHEBZaCG9s1PIP/ytRrlVWNs/mI5piwpb0j+kIDu0XtwGQBzx2d4PNQdAGBCZ+EA+8z9E220xMpzMv6jVTkwUDsI/MxAytjgk0j8EzFi5YtoGQOsqUAwROgdAesBBOIVB8z8Di8zT1PvMvw1ZLTbxC8I/htcevxLcAEBrlmlHOP0GwLnvNBWQOOu/sIQKe/0hEkAAgqTu9YztP8dlqM12OLk/IbYzCf3dAED1J3f+UQEHwP+dWxDQM+u/ih4P+PEiEkArWZEN1I/tP9bCfH4aJbk/AAAA0IwTB0AAAADyrUE+QAAAAGo1LTBAAAAAgv+wQ8AAAAC9E9VDQAAAgMn3sVtAAAAAO89GU0AAAABGzeUwQAAAADq6EDlAAACAPSGgV8AAAABJMaRTQAAAAFKo5h7AAAAACiBVEkAAAAC/OYsiwAAAAHz2dSLAAAAAUDuuFsAAAAABZKojQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQiip1ZpfQ/AOreQSi36z+Vyp612UOUP4fihubgJ5G/akLPtKDy3z8nOgQpIyrpv3CS06HelrG/+iFM6/Rjsj/cpwQqefbEv2hd2SLQx+a/XkqRBgcJuD9QJqCabWriv1+DIcEv9aQ/QN+hvXEr5D/vzDhssA2avzpUn+Ez2sW/OEIWwWYm+L9wcpVYgp3wP1ZMLWSwLfm/z4z+bfzG8L+zeXqQBO7wvznHv/HTJuw/nW2nxQIsAUBmWrzmtwfEv7gMBOROxLI/pzZQfUG0AEA5+XP1PBHfP1s9dngUs/q/ushf+khRC0BPedhl984ZwDH289baGh7AkOFU5iWEvz9cKqXHCrEWwH+WKZl9tSJAPCDjBeAqAkDD7xQF8+UHwLlg7ye8O9A/6GfnuEfVIECgFQ35uYkXQJhpNqapNu4/Xr2CQtcb8T88ilETMZ+av4XVnapjhX8/U7gFnr+Cub8wcuw6nRGhv5+q6zazZABATu4F/XhEAECYMoEnx/mxPxCv/IMXb1M/kXZV1kBKrj94dg1M5TfNP4Djw2lxn8C/cVbkh2hy3786mw1eq0sQQAscZ+ie0CFAMCmRzLL/sj8M2N4QzIWwP2uhbA1VTo4/7GZk0KssNz8nUWrIlVhxPw4xF7ui25A/Xr3eZLUdmr9/us8HWVG6v5ExEB9mmNc//QtahHcYAkAAtusBVjqtP1j9zhpd750/kt0Rn3dIrz9y0Sg9ec1nP3fWm1+my0I/0IWx/oa5br8TdIABDpvAv8PxNQA92Mq/uRvz4pRdkL+65PaX+3YaQKIMjE3yTNc/oRQIrKYa1D9Awd1ZRMGxP+TmL50wxpE/0PXD00aJoz/q6AsDJT68v7lIBXP5uMQ/2N0B9n1p4L/DWRBEn93wv3zX1/7KARNAKlPDFCOG7j8pIUFba43uPzz92RzbeJg/lzMAG/jcYb9GpTsvzwmzv+uyV+JfJ7S/1L9WH6THu7/9TLqR3ODCv+yJkUB4efm/XiGebqoLBkCZBIJcW57vP+LRGJlQUPA/yQ3LkCQuoj/IN8ctSvoxv0yrX1gPjMa/aELjLfYbWb9heh30wjbOv0vri6nY0mC/aVq99IUZ9b+7ssy+Okb8P9RBrMdOz9I/HsJJLqyZ0D+EParQKdKmP7GsaFlB/ms//qEgyPc9aL8bIKa4w7m1P9Nr0HQlnqa/kFYYyjAn2j9sRK3oXvLtv3zX1/7KARNA5gseS1DB7z8mPGltiU3uP0ph+Kba/Kg/amrA39UbRD/QBYXUNghrv9r97Xcefco/4UZjamBUZb8IqGnejnzWPy7xFQpIaPm/XiGebqoLBkDuHhXzBrDxP/qaB2LE+/A/a/NuyAzkqD9NdpmcOZxuP5+2ltbJr5K/wCyuOjK1yz/xiS927SiYv8eRaGNf6dE/AKe/bnne9b+7ssy+Okb8PwkCJhY+ieI/NolUO2gX5D/kpm0Cs0ayPxNOuroCLI8/llXyokltx7/CTcp3kEuqP/1WB8cAvtM/aJhr5UtZub9ROh3BhtnuP352ZiHJk/o/M6uFx6cC7D8yfQnxxX7tP8u9+Z5lv8M/bytlcIKrsb+D4Zo5Q1fSv2zz31J4Ysm/4WVwnf1l1j8OlDi5jTTOP5fDVqe4CPA/fTtVVjKs8z8gB0Sq4KXZP5UBCJbvStk/K1X52WWYoT/QWZ7nP9owP1ZyYSJwcqA/2Hx65VXOs797M4Q8YtOwvwc9FKOHzcQ/t7l9mlpt6T9+dmYhyZP6P8/x/OZMZNg/W6ZdT38h2D/x3NoNydmbP2wLgqEZ2lM/Y/DjwP5WoT80ANRk4x+xv+f5l9EF8qu/MEri3ixAwD80HPHJKGLlP307VVYyrPM/qOGPpkuE5D8sZMBPeRcBQBDkvOnU5fi/JPXpxBUo9T8+Iu3KhSe4Pzk3aRmdGbQ/jI5Kl8AXAkB6DFVUBSkRwNzR56Exlvg/9F7uNH4KBUB2L+su+W/gP4D7M+nj7tA/Fe0Bw6T0E8DAj1S1SbgYwCryUjpkvuk/yxA1flTEBkBcqwtwjx3Kv1AJaowPw5O/QJFY0HIWw7+mipta21MBQFN2W0g2LBLAca1TQ0A9D0BCvkZBsn3Tv+BHF1t/COk/lj7kQEp98r9gDjNQ99O+P3f5hmXxdhLAYFweFW0vCEAw11F9qmHBPxXXdtJ2NuM/lj7kQEp98r9gDjNQ99O+P3f5hmXxdhLAYFweFW0vCEAw11F9qmHBPxXXdtJ2NuM/3N8Zzn2H7T8w0vUDvCsDQNSNvEQp+/0/+MPqi8xRCUDczq+bwvbVvxP9ggSpWeW/ZMffVLn+8r8+hWFk2msIwE4K6tTbdPI/sMGQrM2x6z8LulJeKNTgP8qjGHn4L+C/ZMffVLn+8r8+hWFk2msIwE4K6tTbdPI/sMGQrM2x6z8LulJeKNTgP8qjGHn4L+C/SNvRnw9Dvr/FQ1d/SYEFQARTKPTURN+/OFKoNrAU7T8hgx8Vumfavwxmf4RUuqc/ckxbwlU6ub9jBLk2SY8FQNd5yOhZIuC/sOAYJQTo7D+5cxl7C0TZv2HBRgeqM6g/BQopz/A95j/qQ6JBU28AQN7Gqp8urPi/EoDvEzrN9T8siwmS/m+/PxLi6SnwDLc/KfTwI6e55T/GMkl7UaoAQMKzf8jkuvi/PiRQKzWT9T9Pt+gb2Zm9P+YVWVsYoLg/AAAArNsdJEAAAADIh1klwAAAAGDBSEPAAAAAnLZlKkAAAADbVwVDwAAAAE9rBkJAAAAAx3BkU0AAAAAX5hlBwAAAALFbRENAAACAzuF5WUAAAABCSG9AwAAAABjWe/2/AAAAoK76D8AAAADF7LIjwAAAAIy1rBvAAAAAzMYWGsAAAAC594QgQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHs3XKe2i/Q/DXejD8C07D+0hM7sTk2Bv/eiv1yUIrG/QXKd2Dfz2z+9qIQ/Wqvkv4V20YjsIoS/3uIqV8corz+SwByrztLGvxGSUFr2Gd+/8BcWhtPrxj9C1OW31CTRv3nN5ha1e7Y/HJ2JOWnS4z9scViZWDaNv3ble/BWs9m/C3IvJzs+9786Kqza3T7wP2iFRyETcvm/JiSZ3cHJ8L+iRTxiFzTwv4H6wpGwO+s/lch58RHICkCQF8uZS7/Uv54QAwsp8ss/NMGkbRAHxz/yILEcM+TpP4jsZ3i/egRAqrIQoUAxEcA2XFO22pgRQIXLN952sxNAjFJ8/8mzBMD3MnbPxRD0vxeHlHttyDDAihzztNlJOcAiIYhNCSjMP37I7ffxkdU/d8TuDp1EIMCU6fTxSB0RQGiX55iGrhPAI+PJwhUe+r+EajnQaU7XP+sPFLSgtnU/uQ6+oFKt379GQ4eNYhf9vxdfHg6QQQBA7e3AfkJgAEDl0mKNxp+yP2AB7RLN63W/XSdGEGsgyj8ilzeDa2bCP/n2dkjnrtq/U//HSjeW079C+8c57EkQQAscZ+ie0CFA+ZP0UZmBsj/BSAiSQtKwPwu7CTK0bYg/NIeujNhLRz+ytI8DCiZ0P6vlqhLgo4Q/rtVwkzOFnr+64vFcKZevv/l+5Zn3zdc//QtahHcYAkAFTN8MmO2qP33Mb7OR6Zs/Pf+b6wtFrD973H+oM+p3P4pQ3QR0oTs/8V+N360/Yb94PJxXmoGyv/ZR2Y/8Ob+/b6O/uKK1hL+65PaX+3YaQJXxu/18KtY/YKVIlSli0z8sbtcpP1GxP6HRH3jfupQ/1ZVo1JykpT8cxpc8GB+7v5jQ6IIt6Mg/Q5EfX56k37/n/YT6blvwv3zX1/7KARNAXGMKDIhf8D8tmoFxZfrvP3NgrH4p4p8/Un0ZUjnRKr+e+NdKxGyFv5cl1zEaHsS/07bRtyaqdb91GxoieBvRv0dpThN4Hfq/XiGebqoLBkBQH8vg1rnxPxwqnZhplfE/AWrZUQGNlz8YN7MqMDiBv/4AxQc3BbO/xzFpsV6Tv78vNGozCji4v0sjSpFVGsS/ZbC4OY809r+7ssy+Okb8P2Zaa3Cc9NI/ZZqEj6vf0D86Ys8fAz+nP/w+4DCIuHS/4IF4huWSlj+Hq+nKrJK0P8/4/y+6xK4/3saSf/YK2j9KcfwDoD3uv3zX1/7KARNAh2vnxLgX7z84KoEsxwXuP0qDnqEsXqQ/ElRPR4j3YL+A9nY3sr+DPyOnWAa+Icc/ePklauzmmz8POFO766zTPw4ACQYvSPm/XiGebqoLBkByLaNKaj/xPw6yqUdOs/A/T9vpIXxupT+eeBUmbquAP4Kb/FcIXaa/s7pyDxzCyD/x9r+/DC6tv5G5TnD/JtA/0dmerF2r9b+7ssy+Okb8P/U2atJP2+M/THGNADud5D9Gpha6/ZSoPywRj0iFloo/nh4Mig+Gwr9Y/k7D1QiwPw0l8uOk4c0/IBjn3YoZvb/UlnZw/ezvP352ZiHJk/o/MIykYRnQ7T9izqmt/zjvP2OAlbOdeb8/fct84cp+q7/2HHMUWW3Rv2YOoPddSca/+QgSTmtd1D/Qo+XhWVbJP1ZLZHputfA/fTtVVjKs8z8Es5Q6AkTZPxHFmL7qutg/Mklz88igpj/T+k0krot2P4YKf7jDnqQ/YvO6Vjn+t78hxiQlRfC1v9qKxPC1fMk/K0sPG48D6T9+dmYhyZP6P3gjzhPiedg/M9TQXQwL2D82FAtIe7iiPw/dClXVF3k/bv9kHAcRpj/j/5WUq5K1v6QeR7btbLK/VIhWDqxFxD+YQMZntUDlP307VVYyrPM/BuOOs2r/6r8dPP1/r83gP7FUxdP8BwRAMCqVdf1lCEBuTxv9+HzivzEQP4WW2MU/vqm9TiPq9r/2g4OimQQUQHl/Cts57Pq/AzQPLNo4AUCCDcsPnsXpv9QR18mJQKs/ozyLZbvDCUA9YLc3ufUYQOvRi5FhUu6/OFQ0siwXAEBfQCAyIofVv6wbkXKqgsQ/1W2Nfu86B8BW0ugS6KElwDBm2t7N/wHAg6OnxuER9j+QTwDFXQSBv1iso/+uofK/V0cAjRwnCECAYLORzocrQK58H1oWZAbArxBMfK3sJ0DaRcLg9ysEwPBcp28w3d4/V0cAjRwnCECAYLORzocrQK58H1oWZAbArxBMfK3sJ0DaRcLg9ysEwPBcp28w3d4/YOXXU5y20z/c7AKkxwL3v7WgzmqQmv6/D0y9beMM+z8os2hrUZzQv6aK9Oy0iOA/uiRy79vG8r8zfNotzLAVwNahFBle4AHAoKpjBMh/oD/QlC1jZyXXP47+ehjKeN0/uiRy79vG8r8zfNotzLAVwNahFBle4AHAoKpjBMh/oD/QlC1jZyXXP47+ehjKeN0/GF4bdKq8wL/GL7dNXOsLwG+tJTuf+OW/64gwQULrFUDQfQu8pvamPxCGMlVw4rG/u5YPCdBs278vKz1VXG4MwHBAHtf2Gt+/eITt1DIfFkAi4rXmvJXLv5vfqf0b3bO/uccGBrh95b8IevfHsLmyP+K5uT5bpwRA14SxpXwkCkBQrj1jUuXevxoufhpzxM4/SLES25O69L+oRHGTlh/8P3jfUzufbAJAUUkxNMhjA0CCIGs7oN7nv9SrxU3FQuE/AAAAxUVnQMAAAABaYLA8wAAAALBNrRhAAAAAY0i+Q8AAAADTvrYxwAAAgMymK13AAAAA4PicUcAAAACHcWdDQAAAAOcps0NAAAAAR5ZYVcAAAACiibVJQAAAADyJTR/AAAAAgA8M+T8AAABKJoMbwAAAALtQASHAAAAAhvyDIsAAAAAh/c8hwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFCPvBhlc/Q/yHZhyQjZ6j9fgMMZxhefv64s7QqeXq6/tLdBhw5I4T/kb5mhiu7lv0sB8p2GLaU/ZDZdmAwKvT+zo6dojf+kv/IrSV2ld9K/ZtEQifJMpD/UcTxC1+zfv+7RLV9Z6KA/kKHAN3kn5D/Zpv6Ydlupv88NmR6QcMK/IAD55eDU97/3ULscOnnuP+2gxNNWMPm/azZvWDvI8L/frKfQ0WfnvxMZZ7ifz+o/GTV/FSUiBUCIrwNMhgOuP3uY1NcJX4s/r7uie9WU/j8sH65ekOX3P4ClVKqRl2Y/VDBK7dkA1r+VRh81tf4DwC/CQOF7Vey/Svau8YHL07/tAQZtRPYawBpuIi0ykRLAj7BFmoYzJsDsDMH96l65PzN53XiiHtA/urEbS+LI4D9Qli4QDyEBwG4kARaLI7s/GZ0CetW727/wbbX2batlv056uCjV4Js/S3sS1B7NEMA+FjMzjcIBQLFaY77WXgBAnNYGVzaAAEAm4LvgFKivPzqXTQG09GC/iAqIEJfHwz+drQFk2R7AP+fuUnhZk9O/roRkfoWb0b8ZXxqA1mAQQAscZ+ie0CFAmhfvB5EMsz9+4VB+cmKxP1vX7QXx1Ik/RxyDiFw4Yz/1I3DUC9AnP1XgLGhNjIs/31IKwBqGXb9TuSwuL0S0v7qfkYpPJ9g//QtahHcYAkAQ1Ch2T8+rP2zQMR4rNZ8/I99mk87Rrj+zstwMQ2ODP0tbDms+z00/d4U7wu2GWL8uAL0gcvOpv9dbY02Bvcy/7Q2MlgjueT+65PaX+3YaQIgWplmIYdU/5iYjlFu60z8y4HXrAdqxPyWZAWMTPJw/RZFt8ThKsD+DT4RGqDu3v5B4eoa2nNI/ou4dIJv73L8hpdaEvjXwv3zX1/7KARNAZe0sWE3k7j9iGktJYHnuP1/eCx3TA50/AZpxTVoyZL9n8SRbMqiav0FQ/vDVDcG/Cy4yR2thmb9svOAm51fNv1X03h8bePm/XiGebqoLBkA8z6GwLHrwPwz3ArPdhfA/xtdWFAPyoT/diLmTR6+Pvy24kcfexMC/upcPfyyWvr/d5iA+eSnGv86WB5gxNsS/mzavUdpk9b+7ssy+Okb8P+b+9eQod9I/UQAwep/n0D8onJxKqXqiP7hefwwFV3M/3RjifadEeb/0bcqkRoWyP4lXBYn2M7G/2KqrD66D1j+liIPCRUXuv3zX1/7KARNAtGkGIuaK7z+s9l8pWLLuP59X02wFf54/BOmdGIuNUr+KIGmAefF5Pz/vny0BT8Q/M+lHZ/RDiT8Ve7nvjjnRP5UH6w0Dkvm/XiGebqoLBkDZqfal5pnxPyIPIzDCOfE/ZqQG0pgcnD8kldNdWBYuP2mzut4obFm/S+0yRp9PxD8SkTvjxVBgv+bAFSL5Eco/fxnYcToH9r+7ssy+Okb8PwhAcqWiT+Q/y/4uUt525T9cGc+zF7+oP/Z4ThNHj2U/m/105oGlxL9rHpAKm/2KP9WxSTIhk9A/oup4Pm15oL/jgrXJkTrwP352ZiHJk/o/GgiB3Sd77z9SalmecAnvP/eqKUuNQsE/yQWCN31TsL8XsUVX3uvNv+j5bXf8A9C/emczxNlk0T92vXQkbDXSP/njWks63/A/fTtVVjKs8z8drgr+5uvUP+Wfgv9astQ/5jVQUoFgpj+XlHySw6h/P0Oh1tsQDa0/55Z44cYks7/QUMsAiAPAv5SmzfM+Esc/oaLJfwGl5j9+dmYhyZP6P+sJsFifD9U/mWDmObNn1D9YByb+9zGiP3CBkWNxU4A/RxKqv8USqD++8o5qis6zv7ClWBwzVbW/xP5t0sOwxD/jGaAtV3bjP307VVYyrPM/f9oL3KoN4r/Pv96mzd0CQANsl9ZrdqW/CnIgU1s7+j+Ol70SJ1zHv09x6onrArK/A+EuMq2M4j+ALTroDsq/P6PUDw1qOtG/bNYmZlRRAUDaGQk0o6q0P0T17EQrzY2/hEWfXNtMy7+1d9UcLjDRvxSV8VQLX9a/Z0Ro/kWpAUAAOowicfElPySgMKAvz6a/rnKObAgB6T9oAGezbiASwMaLjE8HVx3A90U7P1JSBkBYFbHeAbjWPzGuHuw7zca/ExOfz7pS8r+ibHwNkYoZQESBiedpAxvAXJIdN0yPHUCOtmrk4izyPwyTDqCujNk/ExOfz7pS8r+ibHwNkYoZQESBiedpAxvAXJIdN0yPHUCOtmrk4izyPwyTDqCujNk/iIue/Y1Fyb/2KkSNE6vLP+uMAtOGIeK/N/KUYeaoAUDMfsaMoUh+vz680z00dq+/ygML/7pGxD8fNsKr/bMCQLEWbTO76Ni/FlSFz22/CEBNUX4Tf9zDv49cJdc9P7K/ygML/7pGxD8fNsKr/bMCQLEWbTO76Ni/FlSFz22/CEBNUX4Tf9zDv49cJdc9P7K/7lOhXU3czb/8v6NvYrsEQMpa3yyWDs2/QbdicNik+D/A7RoHksl4PzSpCgZg74S/O1k2BbOXzb+k2JF4HL0EQGL/Wh25PM2/laZfMNCh+D8w1ORh0SuAP6RbqU1t7YS/dN0e0FXm+z9am1wukYbwvxCuDizTges/gyqrzc0KCkB1itFH/AHxPzUZ231Pm94/gSeVavSiB0DeduiQ8asGwJwtu25PQ/U/0Ib8MaEYEECIcAjamMv3P4Qsv8vTcr8/AAAAZhicMkAAAAC4fWghwAAAAG1aZkPAAAAAKBBXO8AAAAAaoPFCwAAAgMhA01vAAAAAgPwqLEAAAABMQJdDwAAAANF4ekNAAACAyBrLXEAAAADSrhxSwAAAAL7EaSPAAAAA3u8uIsAAAAAJBWMhwAAAABBgQRfAAAAAVEsRI8AAAABSkUMVQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACLLxkIQiTtAgE16HYz1KEAk+tk/rWL6P5gezfmlHizAgNv9aUpjOcBvgcXqLK56QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLBU1cAYaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVeAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYFAAAAAAAAAAEBAQEBlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksFhZSMAUOUdJRSlC4="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWV1jYAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZgNgAAAAAAAHWYwhfQPfQ/LmqUK8w26j++O68RMUCwv/SjEwlLuZu/Vqf1fio44j8B1+zx3Evlv1LHotn1U9G/XgZbxetzsj9o1Dbxgd6iv6q5IYndiNK/DRQHDYEZ3D9sWlrxlkG1P0btBmg6ybQ/mFi9hsrn4z9oJcphS1zTP8FjRhfuCeC/6oOAfhq997+7ttvY6gTxP+cJHC30+Pa/BUv0dKPQ8L/0q7Vk3oLXv30YPiTRI+w/2uDfpSDLB0AWy3O4TJ1jP3LKN3Wfqb8/xNeb0dkw5b+JlaL1vfYEwH114DmbyfE/sQw8yvxx8L+FDSPY6UEVQJWB/x3dQMC/E6q4h2tg/j/BaztIKowSQLhO78YEtui/kU+sxi10D0CIZGY5PuXDv0e8CvEyXvc/p/kPYGfjEcBmy4PDoFntv0hGr3jmdM4/8JGDKUIJ1b8EfJT8Q7jmvzlfFTpAULY/EWm0aXBO/T+9hi5C1wOhv+d+PTLoRwBAu4sT1HCYAEBojdmfOLW0P53UdG2Pbnq/bb8TuO8s0D+LTH8gecS4P3m3kovP0uC/fyRQbV5Tzr/W1RC0YFcQQAscZ+ie0CFA1GyERpomtD+ZCATPCVGyP+iGanA9f44/9BxNtcwBVj8YpXU5RqJyP4yrInmpv5I/riPsYuqcnb9EScUSgo66v4OFdAwsrdg//QtahHcYAkBZXjNdt82rP7BHjYN216I/+t4euZrOsD/8tkwxPiuTPw71QKCvrWG/OpkSuuDyaz/b6LXlSkfEPzXnGvNuJdC/+acHaSsGrT+65PaX+3YaQI6UqKT0n9I/otHPP3zJ0T963hATFyK5P8bI6Z5EoqY/zUHK++GSsj9zG4IPaGW3v/euOiJ9H9s//c5JJ6Kp37+q7MLrvVnsv3zX1/7KARNAMO0gIMRy7j8CXfv5VvHtP2Y9pWAjeaY/F+6yOqM0kz+rVta56uK6PxghKEP+RcS/F7naSlG1xz/8wZGnStvRvyxXU475EPm/XiGebqoLBkAEAmHy+ArxP9qJq5b94fA/8K5Jxf3EnT+cR0wOOpGHP5wxG/2St7Y/uO4MkclSwb+umFcqeY+9P6Qhwg28isa/nHrRMo269b+7ssy+Okb8P0SZG/ZFL9I/VRaVGaWl0D8SGMrGe/CgP8tVjXm5AWW/WKNZjHiShD/UhFSrnxmyP5o01Gft+aA/pEAzXZe31T+sPbNUjwPuv3zX1/7KARNARdao5r2i7T9YKJ8vwSvtPxvqZyCPTac/6L96MvoCkT+rjjpc59G4v811s7YVXsQ/41/aAfB6w7+tt0TpG9PRPwfiz4U+yfi/XiGebqoLBkBfQ+R7tgTwP+0ut2b4LPA/Z5FhEKmosD++8ZNR39+ePw5/IQ5Nwse/6XsbNzczxD/r2C6JggXQv3bE+hREPss/3o6v3e/29L+7ssy+Okb8P45u0gzabeM/bDoStOj44z9OkY7TukKiP1epoJdNOHq/E0Hea1ysv789V4xj99WcvyqnoaZYKso/dTyAD1croj8GUbeTzrTvP352ZiHJk/o/D7LSFClB7D8Lq1xt8G3oP24zqDYl/cQ/Du4e/Ad7qr/+PyruXCbAv3xSw3SBINS/yWxrqwrrxD+TRxmNGJvZP76G0ZBMgu4/fTtVVjKs8z9BaWFsIuPPPwYMzzR6NtE/cN6Le1lMpz9T+CDQFMmKP6P8SZsWCrU/iNRR2XvZp79cIn2YsgrKv6PKRSBpEcE/79RQwz3D4z9+dmYhyZP6Py8d7a+3bs8/EDP5fydQzz8+MGDSHA2hP9Pk4W36AYw/OgIxx8GQrT+2srd+8lmuv9RUrB1dj7+/ULweaPhTwj8al5NEYJjgP307VVYyrPM/nu22YeCXAEBHMAxFcgr3v7lQUwXwkfc/ztMti/ldDED9U9bE7MjuP7hAZeMsctA/qOVHmSBm4b/EE3p6xQEIQFgmZ9mn1se/Vf1aLKHRBEBkjKmZwxfTP/BYrquieJ+/BS3UF72f5L/0Pn0QGHgHQPYn6mzrRc2/TzSNlUjkBEDMnYG0aGnSPz8yw5qqLaK/GQg+4GRE3L+qLX/xbZUFQLBFA8te/RJAMTFaF7+gAEAKhonaGfnOv3vp4A9E5qO/DpV0vg8M5T/qAGtUw/Xwv0HCWwo51BJATPZgfBm44j9u3XxH1qzlv0xQscD5oce/DpV0vg8M5T/qAGtUw/Xwv0HCWwo51BJATPZgfBm44j9u3XxH1qzlv0xQscD5oce/xwbcmC7dyL8AIvcGeWz1v4+a0vlG3v6//Z8IKFQZA0C1VZpNT2XRP5SmKCSuIqy/hu3z+n39w78sQ/QEfjLbv8L0zB7xlP2/PSrHd0ImBkAkfihbqk3QP/dfzIRzP6W/hu3z+n39w78sQ/QEfjLbv8L0zB7xlP2/PSrHd0ImBkAkfihbqk3QP/dfzIRzP6W/Dfh+p95NAkBTEkJ0B9Hxv+kGc9xux/U/Rw5l4LsdC0CrGWu9qEzxPzOxM/ekk9M/mxtB5KyUBkA1GIJEv3fsv/M21QPUcO4/hp2w24lbCUChb3UPVWL4P3b8neCttdA/VrPSHFp88D8Ai/JlnnJ9v96F5IcjDfA/WIBSUTrzBkC4FTaQmzPYP0iefE0PyZO/32ZwLMgq8D8sB8wFwTKSP+HPJPvGzu8/ZsdwuljjBkDn/UKPUN7XP5BegLOtEJG/AAAAUJp0BMAAAADfW9VCQAAAAKjMST7AAAAA48BnQsAAAAC1H71DQAAAgCrg/ltAAAAAxXSmUEAAAADTB8JCQAAAAIKliTxAAAAArmJFU8AAAACLNbpRQAAAADcytSPAAAAAwDJt2D8AAAAhElwhwAAAALHnHCPAAAAAzCddDUAAAAChGzchQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAxDYkJuzzlAs3T+Q4wKa0AZpi5orpg3wBBAsv6AJXTAjcc9fB5QYEDc/AxN3l6KQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGaTTlDqVfQ/O8mNg2Xf6z8qiHJBp5qwv6MBGklhsq6/jo2SEm/t3j8iOZ1lybDav12xGqagKNC/VjPVS11GkL/9wBmtf0y0vxUxNol+e+e/wZBwbk+s2j/UHRiUyGfav5y5JzgsH6W/XKNa7GBe5D/1/JoHl2/TP9gIZ7weatu/TZLcxXdD97/0YlYYwEHrP6NFxphYNfm/PkjLusbH8L8A4xNj40XsvyO6Lyc9E+w/Kt2QbNOoB0Clr3DGf0mePworK3fDXcq/EnuHFkpq7j8QbSL1nc75v/sMIcIQ4OO/L8ffhWxQ+z9HlVe1EIb6P2VOY7RD6hHAaFTATZg3FkC8ywqlhJH9PzugCMbi4gpAkP/Q9iLCMEAMsAANmO8OwK5yDA8ufa0/Wl3LumtqJMAeEloFWg06wJrzs3gB9Q5AKeoT7VpJAEAEGLLf0yd0v3hCMUep3J2/3tL+Zb/r27/aQPVt+yKgvwYW8Lhd7/4/vSCAQOza/z+bxPyGDVq8P4ZAPxgjUYu/1v2mECRc1T/A0+Z7+y6/PycgPhtPvua/GxPc+Z+00r/KTwugOb0PQAscZ+ie0CFADgDyrpTksT+yFymctFewP5yVzkdV748/MMJNA6MPQT/3o+Vv+M19P/fFPn3uq5E/kUFzoJDxqL9N9+69lrG6v67atNkp/9Y//QtahHcYAkCynRwhffqsP9r6IwCMKqM/2Ne419WCsT/zgkjJVEiUPwL2dZWiBmK/3DCJIH0iaz8N0/H70kbFPzZY3YHNctK/GQQuaeCjc7+65PaX+3YaQGQ8X/i93tE/qAuQ/eAL0z8cdunlWgq9P+ppvYx3Oao/OuESk2EAuj+GP9dIhpizv+TF3AGRVeE/veOcVnTZ3L++puyXbwnsv3zX1/7KARNASjR7xVMe7D/Ee+oRsDvsP7LiL5RLSZk/bipVS5Lngz+RekqTXdayP4+JIZ93+rS/4pqkqHpowz8WKMe4zK/Dv9gmQicrXvi/XiGebqoLBkArWuXtEtzuP+Bb/cA50u4/9tfarcpTez9q2i33z8NTv+KQGBf0ZJu/DYL0kNggpr8o+oi6SpmivxodsCEMDK6/P/dIKaHS9L+7ssy+Okb8P3Y7qg59PtQ/0/ce6qHS0j/dag4u+negP5UniSO9vnC/ZXbKoC4KkD8byIERaIezP4woMovGn6s/boOe42/v1D9LZq23TVPwv3zX1/7KARNAWuS1NoED8D/C+zkdSDjvP8LjZqgLMKY/ouHm93i0iD/k1ergu4qxv1fFMc5TssY/qrOaWNvAub+Kk1NuYRrTP4zh2yJJv/m/XiGebqoLBkAaPmfnnEfxP1E9Jvc+IfE/ah5dcnIGrD+oKgvtCIuZP+mzXfQ11cK/8R6EL6qyxj94AoRnsHrIvwRgeDbMgM0/KR20safA9b+7ssy+Okb8P0LyB5FqJ+Q/utL8T3+p5D+ZZU/oJ6+gP3Keje213Ho/eFgDif1lvr/eHVLoPd+mP2hCtvJ3Gsg/1uK/7QA1tb87TDFA4CHwP352ZiHJk/o/vIwkFxq+7j+buC8fI0vvP6sMIvJnG7w/jsn50kVYqr85z1Lov7/Ov7iXXW2Iysi/bnxqfFG90T9x1x7Hre3LP0kluUVR6vA/fTtVVjKs8z/88U73i7/UP4hZTmho+tQ/zuxmbMfCqz96xtu/Rw2MP+EgxgC2QrI/kajB3FGrtL/ca9OtigrFv1RvgB8kocg/FPAo44OD5j9+dmYhyZP6P5g7U+83VdQ/znpgzblO1D8493ZrkZSnP3xTfZW/fow/uT3JSaMbsT+3/5cXyQ20v13nBDUCQcC/E2S7ep4ExT9eiUq2aijjP307VVYyrPM/IVCaAOI1/z9C1wY52FCzv76cc+a97dK/CJnRwln8B0AmhHdOAfHpP/iEDpxFf8G/btUFkyXX5z/u8WO9Hiv2P4tHTGjqifI/sCVYHibSBEAMaqq+1pvjPz95qWqZA9G/HH/UEN/fBMA2e7Cb2e/xvxRjkRA7Tty/mD325qNQB0ANDF4QdkXSP5HKlFo+Btq/ZKB1M3/r8j+O1WjtjiIVQGdkLWWZwAtAZHIVZE2ZBEA1grx+b77Jv5jJuWHmBOc/VNwl8AUE678zqErkNqAmwA7RX/QwFwJA3gnWxItQD8BYJnj9qeLnP5aY1nn9l/a/VNwl8AUE678zqErkNqAmwA7RX/QwFwJA3gnWxItQD8BYJnj9qeLnP5aY1nn9l/a/yECEjKY41z/mwxv4pi8iwDQtMYxCrNW/Xre6SQ5yBECY+1yUbybDP1nQGURUUOK/wV1xnGdRzj8iaLeuY8cwQOpPRx2MXwZATEbSXy+8K0AyTfEtPzbAP6B6npNrVbI/wV1xnGdRzj8iaLeuY8cwQOpPRx2MXwZATEbSXy+8K0AyTfEtPzbAP6B6npNrVbI/ELF2LGb11j+is7MS4RcJQJNeyIaTwAFASMdElN+I8T/gmthHUQrBv5HGTm3YVMG/qglFivU21z9A6F25zxkJQCgOCuk0uwFA7GfAo5+F8T9g5Q78ipnAv+GGbRvxU8G/foLDFF/oAEB8dHUmy7PdvzyQTZG0xMi/8FQHbDloCUAXJ1mBvvnsP+r7EoKXUK6/q8CXPgHNAEBsOgUbB/XbvyRqM1lC3Mm/s4iRIpJOCUAotBSe3tHsPxEUdRM2PKy/AAAAFaxYQ8AAAABStGE/QAAAAHQ34UPAAAAA+JPELcAAAAC5Du5CQAAAgCP3kl1AAAAA+XH+U0AAAAA2Byg9QAAAALGBsEJAAAAAET2UXcAAAACo26RNwAAAACY1WiPAAAAA6T6cI0AAAABFSF8jwAAAAKDfqCPAAAAA/5E9I8AAAAAJjt4hQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANzUzxJAn/Q/bymJoe2M6z/5OrvidG6DP/vKQH33mJy/HkXuZSFA4D8sjaCWhPbpv+wPegc3unk/vag0zGndwT9bwTHriV/DvzVgZm4vYeS/4sBf1xivqT9J02asgy7evyT6Y6Ssia0/o7g8204J5D+iqEWlMEq/vzKYyiHmd9G/BiiB93JK+L/TDcKvXmPwPytfGKHwK/m/To5GDvrH8L8kO4ba2s3wv7chwuKIJew/qAccBNI/A0CGr5dTQcbFv8nhxs/vLbc/Qjd9OlgP9D+vibxEYFngP8k034UGJPC/hMt/JPm48r80xagheuP3v9J23r7AQum/RNHkmQOc5L8FIuyGfQ/4v2hcs+2igh7AVqcgVVdLM8CYAaJJRXDLP6udJffRR80/MAD3RgsJA0BCVw9Wh+QdQCKbVbf0DNQ/b8iMUwwj5T8u8bB3X9Oavxf3+XkX9J0/CkyDDN+78r+OTo0kmGeuP03Bqm6SYgBAOg9CVy5AAEBGaUQFmvCxP7JY2G5EUmk/XIODELtzpj8GWqXdbpDNP0XHxARoxba/TBiUS0br3791t3MdC0oQQAscZ+ie0CFACtuL1boksz8R1b7X1V6wPxhBL2f/g48/HaJHnAqTUz+z1kZWJORQP++hzc0bZZI/uWEfGkOOeL/p00WHIKC8v0FW6aklidc//QtahHcYAkDaHaJo46CtP0yjzcQFWZ4/iEVduwx0rz/c+bGSpsNjPwgKXjS181A/jxLEyuSQdL+mW2hMANXAv73JWGHYPcy/ix/7FEJJhr+65PaX+3YaQPH91/FVpNc/GIf+QuSk1D8eLk5zRn+vP3ugCb6+1Yk/IefRs68jnT9UQo4XK9G6v7ogO23krb8/mKiO90UT37+YlAFdBkLxv3zX1/7KARNAW6fspTqk7z9iuCA4/r3vP/icYkx6zpY/V9nLc4kRbL/cDGJGddC1v+a1QDN82LK/DoMjxDYiwL9SBZZUqzrBvwBNEeWZ9Pm/XiGebqoLBkBtukWUZpTwP9x1S5RxEPE/hBpYppiXoT9nMHKI3iVUvxWOGD09psa/3YuNJ/Fhfb/WG6+Lo6LNv4fmU7f/OIO/6z053/Wb9b+7ssy+Okb8P5mOv5kL89E/8JGmG4jLzz8OEAJNmsOlP9fsJBuZgVw/6NroFK9EaD/JHCuFV0m0P04t8Rgbxpq/fgI5bCBV2T/oXH34Nw7tv3zX1/7KARNAR7WKC4Hm7j8Asql793jtP2k9JPMi76g/gkW/qGGASD8GKr8Y1Uxwv0PtYAKLA8o/WVbRa4QRSr+dMTsgAVHWP97hlv5GDPm/XiGebqoLBkDeaaVugEjxP5jGNHAzjvA/AqNLMQJxqj/TdAnwsDV9P9aAYzfYKqG/aJpZ29gHzD9TLwTyg32mv3e2ekJmXNI/Dg4FnRuV9b+7ssy+Okb8P9i05x6I9eI/75mJNc2L5D8qKJKuT0+yP9y08OWvkY4/rHK2xenXx7/8a69JXX2pP8q5iN4u5NM/dcLWYCpruL8j5XHSFjfvP352ZiHJk/o//XGC5B3B7D+sIvKTiwTuPwb12ZyyGcM/96ctG3lCsb9lLGJ6lQXSv/XQnIG1/Mm/iebnrkC61T84h5/cE4XOP5vgR5sbQPA/fTtVVjKs8z9f9v5w9k/ZP/cJhx4W89g/Rk3iCZFOoT8ArS3XHvMiv6AvH398nZ8/D/dt2NZrs78z9MuAOF6wv+1jZTW9gsQ/uwBBCWNC6T9+dmYhyZP6P6XO7z89GNg/d8bWWPzX1z+mf9N1etybP0hdQ035QVI/Kkp8PVBZoT/hSJ7zIeWwv9Tcfdb5Ray/HhrV+/AhwD+rWsynsUDlP307VVYyrPM/oDUbsPHoyT9hFdVP4iz2P8u9ihtdEe6/+0dmkkHp/T8Z9einnoC3v1T34d79cbc/lBsaXf394z8AiQ171yx2P+BFKrT5QwHAFLHiR7T6AUAArhU82pxbvzPk0vO5174/uDc0ONrswr8VS6P8rPHIv22TANMTlAHAkmOEFn4mAkBpzGzL4sGzvwgbioe0r7U/xfDQwi5aDMB+8e4zFH8dwJt33+QwbxDAtefP8cOfAEDX0nxeFULFPyHdxUdMXN+/WVGKiCceDUDz8aovSgQlQGPAlT+gTwnAHmKVgLa1I0DGr0oylCAIwFSMw3MqXOM/WVGKiCceDUDz8aovSgQlQGPAlT+gTwnAHmKVgLa1I0DGr0oylCAIwFSMw3MqXOM/gWvoDidT4D/7DCnlNpn/PwverLq2HgHAWqNrAyyTAkBrWL36tSq3vwBPt+w005S/Hjdb55NwAcAzXG2C2rkTwLijgibeiwjA1EfdaLRu4b8sAlx81SrwP8SvvLSPj7g/Hjdb55NwAcAzXG2C2rkTwLijgibeiwjA1EfdaLRu4b8sAlx81SrwP8SvvLSPj7g/u+nquEKN07+opuEac8z3P07jG89OsNq/Fa0fvC/6+z9SdunHq0fav5yoWwqZb6I/QPvI5uE/0r9sQ7jLjun3P+72s1Ugp9u/FfbxQsDi+z+xZnkOHxzZvwO2clwf5aI/8jI7vgia6D+AQ4VZysfdPwiQjzV2Iem/uAM1dGOHAkCiWS38ATjKP4ZbSyToacw/yGMUDnyL6T9TglCU1oraP8txj9wO4+i/V2u8Fcm6AkC+XzmdpeDLPze9gZl6AMs/AAAAxGl0LEAAAAADsrtBwAAAAKGe8kPAAAAADAlAPsAAAABH5Cw2wAAAADe80lvAAAAADAL4TMAAAADGJ5c7wAAAAKE9k0BAAACA/8AMXEAAAADhjQxRwAAAAASzmBnAAAAAqkJ+HMAAAAAc0yAjwAAAAAKmKxPAAAAAdOK+IsAAAAARbGYiQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPTxd+Dd/Q/t4qvPibx7D/tL7YT+SZ2v0C2oB/6ybG/QhFhg5zv2j9e9djvRS/jv6Z4C95kYbC/PlY9rXIfgT8j6xDt7FzFv2NDmEEjN+C/UHzMoejf1j88B+7Yyv1yP8Pfas9Vhbc/fEO+0oWq4z+tHa46SsK2P0Vmfc+TXNu/Ef0wP/V79r8wOYHtgJnwPx17fQm6gvm/MGTv3f3J8L8HfWcNOVvwvyjr0WtZw+s/GD/093IyCUCopEcmd1rVv6CJ27nEJdQ/hIO+fDQH27+g0VjrTzW5P+mpFIPs3ABAqIeztOl9+r/dPWYiyW4FQIj8zQecYQVATqPcylBs/z8oDXnoauQcQFQMmTANDhzAn/ckAquPJMBawHk7yd7av91zug6738o/hT+o2CFTFsAyzrMxhyjtv92IPEXl7Pu/90A8c8UL978OPmkg9UmzP6CS8E9Bx1A/BaUJI3tn8z/I9OCVDWDnv+D3r6y0NgBAutyf1PxbAEAm2xGocP6zP/riv/byyH2/7Okm7eUAzT85vJ0TBcbCP8UI1Qca1N2/J49sPXfs079OMnln6UIQQAscZ+ie0CFAyNpdYwBusj/0hAiqDNqwP+brTPhoH4g/Y0DOMfRfSD9tItkmSo12P2tXeYfAA4M/G0/3CqASob8Vr5XCRSytv2dgtmMtzdc//QtahHcYAkDKNvR3It+qPyJswK0+D5s/jwPvAH/sqz/QXHkqX/Z8P+8HXeinQyQ/2vpo35ioSL/AV9yl66iJv6z9JDOK9r6/agJtMyCpgL+65PaX+3YaQHV7Wc4Y7NQ/4CQdiIxE0j9krM/dJw6wP/RKzUe2YpE/iT1ruwDHnD/iE6N+v8W4v/jmMrTkW8U/tGEAjvWI3r9CJciWVI/vv3zX1/7KARNAWzyTW4gt8D8K0DV56pfvP6RR3NZtWJw/5BrCJFRsTL9McK+4YmqBvycHKtbRa8O/ddrcqypDg78eaxhhJ4PQv6PwEVaH8/m/XiGebqoLBkBXm01z8dfxP+yl9CjAnfE/UwbNn8qmlD8qLk5Ly89vv0ZBVW8+4qC/AXbqRl+FwL9W5Nd5N3Clv3AkMrVK+sS/KFZCUHdE9r+7ssy+Okb8P1PBf2fIZ9M/QaHm8OBk0T+zpxNAIDWnP8R1SoXpiX+/sO76wCKVmz85qOmy5cq0P5+lxvg1a7c/CjynRoXS2T8w60SEE8/uv3zX1/7KARNA8tT07vJN7z8gXDp6CT/uP7UtD9nOo6Q/pWKghpR+QT+tSyZ9InduvwgCwqk/Psc/s9tVnUWjeT8jmbZ4JLDTP/OPWIkjYvm/XiGebqoLBkDyAyhBfT3xP5qqf6svuvA/QIQQHGD6pj+5MDb43AOKP/tFohanVrG/s1AIH3rlyD8DxfZQGqK2v3wyUeXiP9A/weJeKPKo9b+7ssy+Okb8PzFIU0bmo+M/hbDm66pJ5D/u5jQ4xRyoP2SZp/+mTos/5jnaczu9wb+kYY5/B0mxP917lPl6t8w/QfljBclWv79f3lOceLjvP352ZiHJk/o/MFUp6WYy7T9uyB8y/8HuP/LROFLflr8/ha6srLEZq78k0yh+WYXRv+tACAgKWsW/9PoCm2qp1D/VD1lmhHzIP92+c99KjPA/fTtVVjKs8z+g+wODF3HZPzzx2oDi9dg/mnADd72Npj8Ap4TtcCt4P5KpdSyau6Q/Fubdo2kEuL9GTBlM5hC2v4TtdwRcYsk/E2d0wbof6T9+dmYhyZP6P990S7j6V9g/1Jxs/qD/1z8iiZhacaqiP9xdzfyOWXo/QBRDh3V1pj92pp6RPES1vwG4M9F877K/0rb3ZjT5wz/qsZ1BijjlP307VVYyrPM/0iDeRCzF47+lBoCz7gLXv8JSV1d8PABAmrLGQP3mCUAy6k1Ovgbgv0IvB80R+9M/hiVCVP/k8b9zjnLy4WsCQOtOhBx+Yts/iL9QsvRsBUButNijTRTlvyIZ5kWewMw/2vPcPtte9j/eeMr8d/wHQLiL+iLAhe8/svgbsbLFBECvcj0ZttjZvzECtoaAntE/8BlpWeShzb/aHnpZc2IFwBvO9dSJGCFAVveUY5I1+T8in74HTXjnv565ANeUjsi/aD/vuXfnAkDn0izYXxwdQKHWW7zFpyBAgimox9AUF0AjIo33Wxn9v3zyoXdrZcg/aD/vuXfnAkDn0izYXxwdQKHWW7zFpyBAgimox9AUF0AjIo33Wxn9v3zyoXdrZcg/QH1ukUM4pr/oUdLJkwwBwIiBOG5zF+A/0AVE0CIMA0AEGAkJ9snWv38e7TNyWNo/na2JRTjh0D+qoCCw7W70v0BHUS7o/eE/ZMa3+VjqBUBOHi+CPhrfv8fgXyicPds/na2JRTjh0D+qoCCw7W70v0BHUS7o/eE/ZMa3+VjqBUBOHi+CPhrfv8fgXyicPds/1BrCgzxv0D8uTwZWJu/5v+RdHkz8T9c/LHwaqFpmEEAAZ0DACLesP2RVe/jg9tU/kmpQBCQUyT8pGssI7iX6v3fE3fHEJdo/ut7ppvBwEEAAeOk2clxlP2rdn/EQ19U/0NS4zY/Q77/LRgfNUPnoP+WzhMchrf0/9PAq3TaCBUCLgxGU8rbmvwAv2A022sA/01lE3RmJ87+7BgIgFXP3P5ZWM5tv/fs/gjccAAnBAkC86nNssMnpv7Q3WRbIw88/AAAAOkykO8AAAAC6XyFAwAAAAGHBokJAAAAAD2qRQ8AAAAD5ffVAQAAAACEsI1fAAAAACF0ULcAAAADSE80/QAAAAFIPETpAAACAIAbBT8AAAABAjGQfwAAAAFSPAwnAAAAAIhK2EEAAAAAl/qAjwAAAAHHodiHAAAAADzShFsAAAABPDH4iwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALhXu61YwhrA0Jif+NtzUsBZm9BTTEsgQIaQUhcmsVpA+E6mRb+DUkAwGSSf+LSHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPQ0041dcfQ/q6jMEWf36j/DQOp5ayOhv352O5O1grO/g60KgmUF4T8mG6l59N3kvyJBXqKL/7I/ZzSWFzyYvj9SZv8uspugv5qrx+4AD8i/zNQdJ8+nuz+LKfEhnUHVv9le3TwH4qE/5gQUyIEE5D/PY3dGiCe1vxegFEV39Mu/4UTpFWXc979AusrvPh3vPx4ZnSaiL/m/pZryLN3I8L8IUO00o2rlvwSgOzV3Uuo/KGeDw9jmBUCGm1fog3yVP7PI9RXegbA/MYZpSbFY9D8aEaPdMxv+P4LxHD1DsQVAtmB7i4KWE8APOxbDq3cCwPz72szuFNk/cvJVrDSI8L93/G5hNHwXwPBiw1LlTBDAI5cktu70JcAX3LiopziyP642OGcpKdI/fsV2lL0sFUBw/o7EkrQuQCI4/5o1+8A/ei7e5mVaBMDpjE9coR2Uvz5RpNkjCZa/ydJsktLhEMDRm3wM7+jbv23KnNYTYABAHpEFt9yHAEDA9RV8iZiwP1bD2TbGTGe/D8h2omIkxj+yFer5zAnAP5THYyrln9W/4xFu/5pD0b8iMqt1tmIQQAscZ+ie0CFASdYPZ6sjsz8oROfveqKxP8UCzqzw6Yg/90NjdRfvZT/VO1FoYQBVvwryPhSRa4k/JRkvDBHYez/C2KQGRn6yv/BwOi+gUtg//QtahHcYAkDqSLa6CBOrP1qdAkgHRZ8/eh95vVAXrj/9qE6fvt2FPzzAkk4Ypk4/YJPtEOx3VL8fQzv8n52Yv2vP4lHlicq/WfAhjC0FjT+65PaX+3YaQEzysMPdLdU/rRpox7VX0z/cWneZd6awPwBjUkgXGpk/VpWQjOdJqj/pFecLyCm3v6KBLMOwc9A/7yz6nZC73L+iXvXJlx/wv3zX1/7KARNAdPJ+aWCo7z/llKbDExXvP7Kn56VGUZ4/n0rPs12Acb9quMDbyFihvyktk6L7n8K/TaW0vyZLpb/Nr6bgX5nPv3nCScnrufm/XiGebqoLBkBzY9Xd9CLxP9YER2B9DvE/y1tgXRqooT+fs4qG6NGOv+Z9Kboxnr2/gyChdGF4wb/LNTfc1DfDv15WCaH0q8a//O3Mf5jJ9b+7ssy+Okb8P1gEApdXRNI/gwlvcrah0D8IGiaP+NiiPzTH6PZ4K14/8Mofhglfbz9KR9N5WpeyP0TzdAZ/3Jy/LpN+hmbt1j+nVr07zvztv3zX1/7KARNAq3l7gVY87z+orMoCEGTuP66JIl1XhJ8/+CSN/FIHa79qPQEfw9OSPytiQkUzY8Q/Fg1yzLoboj9TNSNbSWDRP8nedoPTbvm/XiGebqoLBkDTxkT5N3TxP2Rt+WiCEfE/LbDo+YrAnD+FCUyBodwpP4SEYfasd1W/z4ssDFB8xD9pPH1dga5bv3btRmlhaso/Yhw681bt9b+7ssy+Okb8PzHp1pqwq+Q/7PFbRw2n5T//drti2S6mP1wnb8daMmo/nIR8IK99w790pUhpbnKQP1jOSt9iCs8/MJwrtA7Kor+nWPL1xl7wP352ZiHJk/o/jSY5fs3t7z8Fkx5y+TvvP0vjFViJuL8/3PK6C8yXrb8qQ841JrjLv9AFAqGh7M+/KD5eAdz3zz886As1uf3RPya52j4jBPE/fTtVVjKs8z99tC2mtz7UPzxygtZEG9Q/GrW8SGI6pj9hwATKgKmAP+EuDgSEOK0/ZxvYEUacsr8IT5VogEjAvwg+ZjUc1sY/MgA6JmRE5j9+dmYhyZP6P+dxiUooq9Q/FHqVsYz40z+Aqhs5pvyhP1DKe9ATuIA/YZ/peg1Kpz//0EZ779ezv1eR2+uKq7S/rRm48ufnxD8w9jtECj7jP307VVYyrPM/hKCyY6Zj+b/Lsr+Lq0/+PwMaNoy3RQRAooqyegPJ/T850RUxEnDivxLQsJSXQqO/nuyJ53WO0T+Arvcj+GmgvyYIhvmUZwHA7NMKgyWrA0CAwp9blW/Ev0WL2YPGlpw/0JEQbWH54z+a+alUo+rCP9nHVGkqHgHA11a5FbaCA0DgE/vc6bO/v9q6+ULo9KQ/oLH9m1TZ8z/FSC48ljUOwGTZA/p5oSDAKCsfISFwB0AnlLsPBvbNPxwVXBASmcG/mMwE4f9m/r9i0GMPHN8aQK9XuP9h9R7AKThfeKhZHUCwm/ukhar4P/DqfPO+DrM/mMwE4f9m/r9i0GMPHN8aQK9XuP9h9R7AKThfeKhZHUCwm/ukhar4P/DqfPO+DrM/FJipF0+J9T8dBe0BAXYVQBXG7tRlBQDAmPamCb7LBECCDHSgTf/Bv2Zz0gTOXsW/7MufyQmy7L+YEMuy5Y4jwMrDjknM6AnAwMCNB/JyDcACUX/jzb/pP6LG+d1vkta/7MufyQmy7L+YEMuy5Y4jwMrDjknM6AnAwMCNB/JyDcACUX/jzb/pP6LG+d1vkta/gOrs/GOn3T8tE5P+TW0GQMcp0PC4JvU/DHFjB5he+D8yYYKEOzXjPyQW2fknadE/Sji7wyGs3j913WeQyXkGQKBAQ0yh/vQ/FYPw371I+D+kevEoT6bjP9MDgITdZ9E/HkFsQAam4z8JzfIjg4D5v06G5fddgQtApTSg4x0aDEAtT023wabjP97WscdiIuE/osH1tZ+g2D+0kN4Rxb7zv0wzOm9IvwpAD9JVbNboCkC+qTyPvC3hP8/HxvGESOM/AAAACQ1FQ8AAAABZKptDwAAAACoGZz3AAAAAWj9iQ8AAAAAqwfJCwAAAgODSKlrAAAAAypB8REAAAACFyvdCwAAAAKek9UNAAACAR4ccXEAAAABAQSoIwAAAANyNvR7AAAAAAD9zC8AAAABibW4iwAAAAFqJ4SLAAAAAniKcIcAAAABCr2oXQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLBU1cAYaUjAFDlHSUUpQu"}, "_episode_num": 9906, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.010001000000000038, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVNwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQL9otBIFvAKMAWyUTegDjAF0lEdA7joSNWuHOHV9lChoBkdAv8QMmnfl62gHTegDaAhHQO46x5nDiwV1fZQoaAZHQMAIsgCOmzloB03oA2gIR0DuOtpM7EHddX2UKGgGR0C/DvaUzKs/aAdNzANoCEdA7jsmAQ6IWXV9lChoBkdAv6V4ZZSvT2gHTegDaAhHQO47RkibDuV1fZQoaAZHQI7EnWYnfEZoB0uZaAhHQO47fEHyEtd1fZQoaAZHQLS2iUQCjlBoB02iAmgIR0DuQfgN4qwydX2UKGgGR0C/f1NGNJe3aAdN6ANoCEdA7kIOOhbno3V9lChoBkdAv+NEvIwM6WgHTegDaAhHQO5CsI9Pk7x1fZQoaAZHQL8rrmlqJuVoB03oA2gIR0DuQxcnAqNIdX2UKGgGR0C/p4Ag5imVaAdN6ANoCEdA7kQimT9sJ3V9lChoBkdApxMx8KG+K2gHTZoBaAhHQO5EWUIiTt91fZQoaAZHQLgru12JSBNoB039AmgIR0DuTzC2DQJHdX2UKGgGR0C/Xh0W2w3YaAdN6ANoCEdA7k96K814xHV9lChoBkdAjgyJzDGcWmgHS5JoCEdA7lAehsZYP3V9lChoBkdAhyrYIa99MWgHS35oCEdA7lBK9kauOnV9lChoBkdAvATyYtxuK2gHTYMDaAhHQO5Rju/tY0V1fZQoaAZHQL/Uly4FzMloB03oA2gIR0DuUaL4ubqhdX2UKGgGR0C8ufXXd0q6aAdNmQNoCEdA7lIECdjG1nV9lChoBkdAl2WrQkX1rmgHS9JoCEdA7lJEsVLzw3V9lChoBkdArQczb8FY+2gHTd8BaAhHQO5eM+pQ1rJ1fZQoaAZHQL9e7aH9FWpoB03oA2gIR0DuYHIbT+efdX2UKGgGR0C5HxaIacZtaAdNGANoCEdA7mEFKBVdX3V9lChoBkdAhOxjLr5ZbWgHS29oCEdA7mJfvOyE+XV9lChoBkdAvxC91+y7gGgHTegDaAhHQO5isgUzsQd1fZQoaAZHQL9Ae6uGKyhoB03oA2gIR0DuYtBrnkksdX2UKGgGR0CijEXYDklvaAdNPgFoCEdA7nEiu0TlDHV9lChoBkdAwAmHicXm/2gHTegDaAhHQO5zk/TmW+p1fZQoaAZHQLq62W2PT5RoB01TA2gIR0DudRt5JsfrdX2UKGgGR0CWbbyRjjJdaAdLzWgIR0DudYMn7YTTdX2UKGgGR0C/+G9y5qdpaAdN6ANoCEdA7nf8g/s3Q3V9lChoBkdAv75yEZiuuGgHTegDaAhHQO54PNPYWcl1fZQoaAZHQKRGBMLWqcVoB01eAWgIR0DueHyi8nNQdX2UKGgGR0CINWLVnVXnaAdLfWgIR0DueRPFz+3pdX2UKGgGR0C+7s5Zr56/aAdN6ANoCEdA7oN6GLtNSXV9lChoBkdAswT0s6JZXGgHTWQCaAhHQO6GmzCm/Fl1fZQoaAZHQLKnqRDTjNpoB01fAmgIR0Duh2JMaCL/dX2UKGgGR0C/r9OWjXWfaAdN6ANoCEdA7oea1Tzd13V9lChoBkdAv7L3c580DWgHTegDaAhHQO6KiP6KtPp1fZQoaAZHQL/n8oR7JGRoB03oA2gIR0Duleek0rLAdX2UKGgGR0C1xM1jurp8aAdNswJoCEdA7pa+6ZhKDnV9lChoBkdAlag8L4N7SmgHS8doCEdA7pf6UdRzinV9lChoBkdAwAS6vRJEpmgHTegDaAhHQO6ZWA/xDst1fZQoaAZHQL+iSAnDziFoB03oA2gIR0DumyJ8XvYwdX2UKGgGR0DAAJop4KQaaAdN6ANoCEdA7p9hEw35vnV9lChoBkdAs8Fk77sOXmgHTXsCaAhHQO6rbzJyQxN1fZQoaAZHQLha2z5oGpxoB00KA2gIR0Duq+/AIIGAdX2UKGgGR0C/9pS8vmHQaAdN6ANoCEdA7q1Tq0dBB3V9lChoBkdAv+H7iyY5UGgHTegDaAhHQO6xOoTmGM51fZQoaAZHQL+J/4m1IAhoB03oA2gIR0DutPnFkQPJdX2UKGgGR0C/YKA2Ifr9aAdN6ANoCEdA7sG8YPXkHXV9lChoBkdAv00EMNMGo2gHTegDaAhHQO7CQM7CBPN1fZQoaAZHQL/U+6zE74loB03oA2gIR0Duw6+GTs6adX2UKGgGR0C0y0eenQ6ZaAdNpgJoCEdA7sPILEk0JnV9lChoBkdAv7+NXjlxO2gHTegDaAhHQO7K+y/0ulJ1fZQoaAZHQLnFR1VHWjJoB002A2gIR0Duy3KP9UCJdX2UKGgGR0CKIiVkc0cfaAdLimgIR0Du1SCbKifydX2UKGgGR0C/Oue1WsBAaAdN6ANoCEdA7tXby/TLGXV9lChoBkdAv4NQFV1fV2gHTegDaAhHQO7Wze2qkuZ1fZQoaAZHQL+sM9lmOENoB03oA2gIR0Du1t5nBciXdX2UKGgGR0CxOK6slsxgaAdNOgJoCEdA7tiREkB0ZHV9lChoBkdAq8waqZML4WgHTcsBaAhHQO7ZtGkP+XJ1fZQoaAZHQLGiX7lq8DloB01DAmgIR0Du27dOs1badX2UKGgGR0CtIf3g1m8NaAdN3gFoCEdA7tyI0tqYZ3V9lChoBkdAt45h3HJcPmgHTQIDaAhHQO7lSVSOzY51fZQoaAZHQL93E2ki2UloB03oA2gIR0Du5bAEug6EdX2UKGgGR0C/yOwEIPbxaAdN6ANoCEdA7uqA59Vmz3V9lChoBkdAv3e5/mT1TWgHTegDaAhHQO7spCgM+eR1fZQoaAZHQL+tjdKujh1oB03oA2gIR0Du7ZC+nIhhdX2UKGgGR0C/mUSauwHJaAdN6ANoCEdA7vd9llK9PHV9lChoBkdAv3sxfUnXumgHTegDaAhHQO74B45vLox1fZQoaAZHQL3IOZi/fwZoB027A2gIR0Du/h0jrzGxdX2UKGgGR0C7S5wyVObiaAdNdANoCEdA7wAjhxYJV3V9lChoBkdAwAFGhGH58GgHTegDaAhHQO8AOqjzqbB1fZQoaAZHQLnErmVZ9uxoB00+A2gIR0DvAE/lsguAdX2UKGgGR0B9ikdMj/uLaAdLV2gIR0DvAM1cY64ldX2UKGgGR0C+SQ6qOtGNaAdN6ANoCEdA7wftygf2b3V9lChoBkdAvd85qi48U2gHTdADaAhHQO8K9atxMnJ1fZQoaAZHQL9YDe9Ba9toB03oA2gIR0DvDMoeXAuadX2UKGgGR0C/kVm4RVZLaAdN6ANoCEdA7w0xMl1KXnV9lChoBkdAv4lE/bCaZ2gHTegDaAhHQO8OJwz1sch1fZQoaAZHQK7GbhZQpF1oB03zAWgIR0DvF1cwcHW0dX2UKGgGR0C/iZyGrS3LaAdN6ANoCEdA7xe7NKRMe3V9lChoBkdAtgRzSw4bTGgHTcgCaAhHQO8f1nK+zt11fZQoaAZHQLjV33bEgntoB004A2gIR0DvH955C4SZdX2UKGgGR0C/4zapxWDIaAdN6ANoCEdA7yCv9XLeRHV9lChoBkdAv1x2MPz4DmgHTegDaAhHQO8h0hAhStN1fZQoaAZHQL+6VSbpeNVoB03oA2gIR0DvKjALofSydX2UKGgGR0CxRoUiMYMwaAdNMwJoCEdA7yvJYwAU+XV9lChoBkdAgfkUyHmA9WgHS2NoCEdA7yx0NSQ5m3V9lChoBkdAv8+hYLb5/WgHTegDaAhHQO8uorqY7aJ1fZQoaAZHQL+M6mO2iL5oB03oA2gIR0DvL3NWz4UOdX2UKGgGR0C/E4I+r2g4aAdN6ANoCEdA7y+/sCDEnHV9lChoBkdAv2HjVmSQo2gHTegDaAhHQO87vgrc0tR1fZQoaAZHQJD7hCu2ZzBoB0ulaAhHQO897IUahpR1fZQoaAZHQL/XcAaef7JoB03oA2gIR0DvQAkqWkaddX2UKGgGR0CaNnYlY2bYaAdL9mgIR0DvQO4jkdWAdX2UKGgGR0C/hSu8wpOOaAdN6ANoCEdA70SAuP3i73V9lChoBkdAv5Rku9OARWgHTegDaAhHQO9Fe+T5ftx1fZQoaAZHQL9cEovBacJoB03oA2gIR0DvRewWCVbBdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 989979, "buffer_size": 1000000, "batch_size": 256, "learning_starts": 100, "tau": 0.005, "gamma": 0.99, "gradient_steps": 1, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==", "__module__": "stable_baselines3.common.buffers", "__annotations__": "{'observations': <class 'numpy.ndarray'>, 'next_observations': <class 'numpy.ndarray'>, 'actions': <class 'numpy.ndarray'>, 'rewards': <class 'numpy.ndarray'>, 'dones': <class 'numpy.ndarray'>, 'timeouts': <class 'numpy.ndarray'>}", "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "<function ReplayBuffer.__init__ at 0x7faa71650d60>", "add": "<function ReplayBuffer.add at 0x7faa71650ea0>", "sample": "<function ReplayBuffer.sample at 0x7faa71650f40>", "_get_samples": "<function ReplayBuffer._get_samples at 0x7faa71650fe0>", "_maybe_cast_dtype": "<staticmethod(<function ReplayBuffer._maybe_cast_dtype at 0x7faa71651080>)>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7faa71c5f900>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "use_sde_at_warmup": false, "target_entropy": -17.0, "ent_coef": "auto", "target_update_interval": 1, "top_quantiles_to_drop_per_net": 2, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWV/BkAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRNXAGFlIwDbG93lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoluAKAAAAAAAAAAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/lGgLTVwBhZSMAUOUdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWXAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJNXAGFlGgWdJRSlIwEaGlnaJRoEyiW4AoAAAAAAAAAAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H+UaAtNXAGFlGgWdJRSlIwNYm91bmRlZF9hYm92ZZRoEyiWXAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaB1NXAGFlGgWdJRSlIwIbG93X3JlcHKUjAQtaW5mlIwJaGlnaF9yZXBylIwDaW5mlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float64", "_shape": [348], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False]", "low_repr": "-inf", "high_repr": "inf", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWV7AIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLEYWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWRAAAAAAAAADNzMy+zczMvs3MzL7NzMy+zczMvs3MzL7NzMy+zczMvs3MzL7NzMy+zczMvs3MzL7NzMy+zczMvs3MzL7NzMy+zczMvpRoC0sRhZSMAUOUdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWEQAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksRhZRoFnSUUpSMBGhpZ2iUaBMolkQAAAAAAAAAzczMPs3MzD7NzMw+zczMPs3MzD7NzMw+zczMPs3MzD7NzMw+zczMPs3MzD7NzMw+zczMPs3MzD7NzMw+zczMPs3MzD6UaAtLEYWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYRAAAAAAAAAAEBAQEBAQEBAQEBAQEBAQEBlGgdSxGFlGgWdJRSlIwIbG93X3JlcHKUjAQtMC40lIwJaGlnaF9yZXBylIwDMC40lIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwQX19nZW5lcmF0b3JfY3RvcpSTlIwFUENHNjSUaDKMFF9fYml0X2dlbmVyYXRvcl9jdG9ylJOUhpRSlH2UKIwNYml0X2dlbmVyYXRvcpSMBVBDRzY0lIwFc3RhdGWUfZQoaD2KEONhlaa3XlgJLUWWWTS1oRqMA2luY5SKEKlzeES8M4FYghr3OtvajUF1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHVidWIu", "dtype": "float32", "_shape": [17], "low": "[-0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4\n -0.4 -0.4 -0.4]", "bounded_below": "[ True True True True True True True True True True True True\n True True True True True]", "high": "[0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4]", "bounded_above": "[ True True True True True True True True True True True True\n True True True True True]", "low_repr": "-0.4", "high_repr": "0.4", "_np_random": "Generator(PCG64)"}, "n_envs": 5, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVRgQAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLBUsTQyaVAZcAdAEAAAAAAAAAAAIAiQF8AKsBAAAAAAAAqwEAAAAAAABTAJROhZSMBWZsb2F0lIWUjBJwcm9ncmVzc19yZW1haW5pbmeUhZSMaC9ob21lL21hc3Rlci1hbmRyZWFzL2dlbl9kYXRhc2V0L3Rlc3RfZW52L2xpYi9weXRob24zLjEyL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwIPGxhbWJkYT6UjCFnZXRfc2NoZWR1bGVfZm4uPGxvY2Fscz4uPGxhbWJkYT6US2FDEPiAAKRlqU7QO03TLE7UJk+UQwCUjA52YWx1ZV9zY2hlZHVsZZSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGgvaG9tZS9tYXN0ZXItYW5kcmVhcy9nZW5fZGF0YXNldC90ZXN0X2Vudi9saWIvcHl0aG9uMy4xMi9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoI32UfZQoaBqMCDxsYW1iZGE+lIwMX19xdWFsbmFtZV9flIwhZ2V0X3NjaGVkdWxlX2ZuLjxsb2NhbHM+LjxsYW1iZGE+lIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoG4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlGgCKGgHKEsBSwBLAEsBSwFLE0MIlQGXAIkBUwCUaAkpjAFflIWUaA6MBGZ1bmOUjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlEuFQwj4gADYDxKICpRoEowDdmFslIWUKXSUUpRoF05OaB8pUpSFlHSUUpRoJWhBfZR9lChoGowEZnVuY5RoKYwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5RoK32UaC1OaC5OaC9oG2gwTmgxaDNHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMIWUUpSFlGhKXZRoTH2UdYaUhlIwLg=="}, "batch_norm_stats": [], "batch_norm_stats_target": [], "system_info": {"OS": "Linux-6.1.125-1-MANJARO-x86_64-with-glibc2.40 # 1 SMP PREEMPT_DYNAMIC Fri Jan 17 15:04:03 UTC 2025", "Python": "3.12.8", "Stable-Baselines3": "2.4.1", "PyTorch": "2.5.1+cu124", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "1.0.0"}}
|
humanoid-v5-TQC-medium.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f47ae84f39c61416ddff1ce0a68dba446ea703a354469480515abd8570fa2779
|
3 |
+
size 7377044
|
humanoid-v5-TQC-medium/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.4.1
|
humanoid-v5-TQC-medium/actor.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2e5965358c708f3882dc73d91618d043b6cd2d84f7d39dd328d6ff0319774ee5
|
3 |
+
size 1317966
|
humanoid-v5-TQC-medium/critic.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f8c749f48476f9c9ec857a522432ab91de4d1f78c5e38d6a67efce64cbb7ba5f
|
3 |
+
size 2664618
|
humanoid-v5-TQC-medium/data
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVKgAAAAAAAACMGHNiM19jb250cmliLnRxYy5wb2xpY2llc5SMCVRRQ1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "sb3_contrib.tqc.policies",
|
6 |
+
"__annotations__": "{'actor': <class 'sb3_contrib.tqc.policies.Actor'>, 'critic': <class 'sb3_contrib.tqc.policies.Critic'>, 'critic_target': <class 'sb3_contrib.tqc.policies.Critic'>}",
|
7 |
+
"__doc__": "\n Policy class (with both actor and critic) for TQC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the feature extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_quantiles: Number of quantiles for the critic.\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
|
8 |
+
"__init__": "<function TQCPolicy.__init__ at 0x7faa74b97f60>",
|
9 |
+
"_build": "<function TQCPolicy._build at 0x7faa74bc0040>",
|
10 |
+
"_get_constructor_parameters": "<function TQCPolicy._get_constructor_parameters at 0x7faa74bc00e0>",
|
11 |
+
"reset_noise": "<function TQCPolicy.reset_noise at 0x7faa74bc0180>",
|
12 |
+
"make_actor": "<function TQCPolicy.make_actor at 0x7faa74bc0220>",
|
13 |
+
"make_critic": "<function TQCPolicy.make_critic at 0x7faa74bc02c0>",
|
14 |
+
"forward": "<function TQCPolicy.forward at 0x7faa74bc0360>",
|
15 |
+
"_predict": "<function TQCPolicy._predict at 0x7faa74bc0400>",
|
16 |
+
"set_training_mode": "<function TQCPolicy.set_training_mode at 0x7faa74bc04a0>",
|
17 |
+
"__abstractmethods__": "frozenset()",
|
18 |
+
"_abc_impl": "<_abc._abc_data object at 0x7faa74ba2240>"
|
19 |
+
},
|
20 |
+
"verbose": 0,
|
21 |
+
"policy_kwargs": {
|
22 |
+
"use_sde": false
|
23 |
+
},
|
24 |
+
"num_timesteps": 4950000,
|
25 |
+
"_total_timesteps": 5000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": 0,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1739143247756297255,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": "runs/0",
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWV1jYAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZgNgAAAAAAAG3l8x8IS/Q/NuWxb4Yh6j8j6J3YQfCuv8B9/dwrYKS/7rjqGD9T4j+X7jVUsYvkv7xAoG7rl8q/FSFw1U/Ttj/w/0KD1/eJv5cWSUYc7su/b+ZT07ri2j+e8Zbjz/y3P4CuqEkSo7E/Z8Y0WC425D937kJTizTKP3L0N0i+/OC/hR7OjRPc979dVJEtNOzwPy1nhClr/fa/dgJdTE3M8L+mUSMJrFDWv8bqzOX3IOw/HB3VV2YPB0CyDjKjZWWYPwxt0PWhhdI/h6/PVR4W5b81z19rjo7tvxK3pKkyJ6A/+O9IGUhIDEDsljYYTmIKQMinr2BbuQNAQ/hVv6sf8T/oWZAzlvETQPrxrqI1W/e/qq45TGz0878Chp2Y6SjnvwwExWi5A7s/WB2/MwylH8BcMSqBKcQEwBaiyjDdec2/PC4mle5z4b98mkgUOLnfPxP/BHvtk6o/evkBcIOO5j9uN/elByeav/ug4cxdXABAIUtEPkWkAEBoSzHzOt6zP5y75llqTHu/laOMmLZ2zj8xPoZgrLC7P5yIi3K8Nd+/XjtaPvhX0L/KtxD9B2IQQAscZ+ie0CFAgTBRFl0StD+JwZS5nFuyP+5zLDZLJI0/DuHhNOYEYT9KpNbFNmtiP/n4xwNE9ZE/bS3gKIiLj7/0Mgj4Kme5vxYzkzPgudg//QtahHcYAkDoNoA9du6qP1pYGZwoAaM/kpFOC+2JsD/fvIIuywSTP0pz5UnxYlq/nIps+0anZD9b5RjmJj7DP3sAtRwwDs+/r8+mKf9RqT+65PaX+3YaQNuiuYWG7tI/KT1LOTnt0T+CpffIHYC3P+/V5lgaqaQ/tf/lKZEHsT88ijWpqam3v1Ms8gNHQ9k/fyV40RAV37+QfHwMvfXsv3zX1/7KARNAXrmPynbE7j8KYp1JSxTuP1VFxL/puqM/EgpJ/mmsjD+Otemm4+izP/zyvBkoccS/k/onpFmiwT+csUW+TenRv8GnCapJNPm/XiGebqoLBkDlDWTXrizxP3EgzgJf8vA/v21QKxZxmT8Sy25dfEB/P/qY4BixPa4/a5HeGodkwb/IlHv/K5mzP8DN03Mdi8a/RTW4ZG/Q9b+7ssy+Okb8P+DtyYN1LdI/zqAE2rGY0D9Scm74Z82hP1NWAe2ohWq/LtAi5gKPjD9OEwI8apKyP9/pvc015KM/DnNeM1U31j/vTSIHhPLtv3zX1/7KARNAeOTrIC+q7T+om9yUswntP3aR03T2R6Y/+e/EK3C2iz8y2gn4Hv2zv1bLbjT05MQ/7toqozp7vr9r63GG7E7SP9Mk24rtxfi/XiGebqoLBkCpqntvDxHwPwIc7Me5GfA/xqnyQ0Jdrj+1ubSVzU6cP76vO9+RZ8W/2fnRjOiZxD+OdPENYdbMv09U1/pMwcs/4CdzI5P89L+7ssy+Okb8P5Xy5b1CzOM/hYbrmFZg5D/SOi+EYz+iP+ERGKp6ena/9bVpbP8rwL+gt2w3R3uZvzbQvt/Vfco/vy82XMRFnj8j2A61QALwP352ZiHJk/o/hbgxcybj7D/UUjh22TzpPzVPQWJ7/sM/ikkZkbcCqb9nUeTZ/u+/v2b4StSN/NO/I4EtCG9XxD9z/+NSFfjYP8zGEByFC+8/fTtVVjKs8z+SMMU3jdbPP1VlhuumIdE/sCRA7y5Gpj+o+Y+U/5+IP5HkI/99eLQ/DwYHuvsNp78BSK8/dUfJv8tyMfr+i8A/1XY4owrG4z9+dmYhyZP6P+6jWRYnac8/1BXUPhBJzz9R3Q3KHUWgP8+OwBO1PIo/UOnmPAK5rD/DinnM656tv6L9xsyjhL6/t8PEDt7mwT95a25vU57gP307VVYyrPM/n/3p+pou5D+WOfQgD7ztvyoI5nDdVMU/+ilhBI8vCkBfNQ8q4DnTP9zvP7h4ltY/PQb7+1Mn+r8FGZ4rWOL/PxwtfcT7SApAapNfuleMA0CKohUBa2LCv2/H6fYBSsU/gOMijKTZ0j+s+e0c+sUKQE7m1PL/BRBA6wpT9pwjAkBIyuV+pF+tP7DDZaElqNA/0rk5WB+n1z9H9QkCbOX+P/hjEQsiGSJAiDJB5duF+z+Wxw44+23evz/l134RbL4/8Mu+VhNHu7+Ec8vz+7QIQDcdPjHjJiJASRrV4H11AUAYJQ0oiUjSv8vUtMBzK8E/8Mu+VhNHu7+Ec8vz+7QIQDcdPjHjJiJASRrV4H11AUAYJQ0oiUjSv8vUtMBzK8E/LsQufvl25z8KGKymkXwQwOvgGB2k9ApAwZilTFwmAEDWHDG0mn2kP0MgjzBIt9I/K0rLAEYp6T/iRGjTp5b4v3J2hhFs7AxAdDVahUPFCEDWYQMVc0iHP8SIjFwlH9c/K0rLAEYp6T/iRGjTp5b4v3J2hhFs7AxAdDVahUPFCEDWYQMVc0iHP8SIjFwlH9c/7RiniLpT8T+29c3t4b7uv/6VBwSEP8u/avHX4meQCkBpNPrz3jXiP9zq7TlEw9g/gVu6m1OJ5j/gyVUbdQLyv/DP6FT3NK8/FIezEv7SC0AOFggc1U3QP1chstK7mNo/aFRV/ThTzj/2xIu+WXHXv4Ak6rayBVu/HSqnDbYRCED6fZTyKje1P5UpH4O2R88/hy83ILRbzD9szDa0BzjWv85v4yNdmoG/diZa6owFCEC+Za1DlDC0P1S/uaqsjM8/AAAAVOToL0AAAAArJdBBwAAAAP1mq0NAAAAAY9wgQ8AAAAD1QN5DQAAAAPVpNkBAAAAAub5WU0AAAAAH+KxCQAAAANhOfh5AAACA1PYiWcAAAADQUs0kQAAAAAfM6SDAAAAA5MyVCEAAAAA02jkCQAAAAA8dwSLAAAAAZA+IHcAAAABi+7sdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALUF3pz3elPAIHRINUC6NkDjCSDZZ7YawJiBKaQxslHA0CjC+6lhIUC29hzM+7uKQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOwhpB4qSfQ/jtrMol306z+b2RUdnW2tv+lDL8+NebO/l+LHhUOL3j9kMbz2PbHZv5gB0PmiyMe/mJHorygFkr/+CKaeEuVwv9fmcI44F+W/HH1IcN692z8rYYyEh2++v+1xaafllq6/gtC/5DRK5D93uxBXF/DEP7n7fpRaNea/8/RTRc729b+xWGKhwk7sP84f8UFKNfm//kxrozrI8L/G90ycUXLsv2yPclStEew/Zb9/dhhpCkDiBPOTR4u4P+vboD9/RMu/gxmr133S8r9eToRoa3cGwKWodUjS6fW/552/IxkU8D+mxv0qwiEcQD5NOVsGhg5AbfXfVoA/DECNUW3rL28cQCs0sf7o6tG/olOFvsSeNkDM7tTUI0zqP01Aly5PZNK/PBHcN9MtI8D1khxlGTEmwJwdJRobwxlABm97pTFPAkBvsFkhWGJxP9X2JL3IW3M/ahgd7OeH2L+q8qyv+JpiPzPIXtI1//4/+RQfqn3i/z/oGrK3X4G8P62VL7FR746/jbD70z9P1T8CUT2Dh1TBP6nfHA3Heua/Vv7RBccd1L+oJl7KCcQPQAscZ+ie0CFAv9onXAKzsT99tJuhQTuwPwyrkkGEBI4/rEhvIx/kUD+/8AsLFKx4PxG/F+B1cZA/fpebXsbQpL/ktCcUhN64vxf7Kj17+dY//QtahHcYAkDuyKaSxZusP7UNzFPR36I/umcP8SEzsT93lpFLvpiTP22myVWq+V2/BY65DbPHZT/c3UBgk73DP5jVnfD069G/ONVWfMkPkL+65PaX+3YaQF4H9Hb//tE/Nmci0iUl0j/+AQZf84O3PxDR7y/fXaU/mOHMFH1btD9tn+sOPuqyv+t+Oj29zdw/3uStTePS279naYoLcn3sv3zX1/7KARNAF+DsmyRj7T986A4H8FrtP6gZAwYVxpI/sRMVSCwefj9TZXCPkiuxPzTPeI1am7S/PLuKl+hywD+1cBFvjdHCvx6m9ofG5vi/XiGebqoLBkCSSO2mXnHwP2FJ9lulaPA/xmSdFEkEej/acV8WLT5BP4GpQCel8oY/TaqmHXSPqL+PHJQ3+S6OP7PaUtr4JrC/t/evYBB/9b+7ssy+Okb8P0t6H/mpNdQ/7yu/w1z70j9E1/oLU7eiP8WwigcJ04K/psForQA9oj/fCOmAzs2zP5lWAhtyIb4/9wI08no+1T9llPeyLVXwv3zX1/7KARNA1A5Gy1hp7j9sWJcVOa/tP9HmKAMDaKc/AD+73GaQhD8pesGLam2tvwaPyoQxE8Y/F/6hplsUtL/gvcaN2xjTPyWrxWjRGfm/XiGebqoLBkDaFPwHXwTwPzI11ReOB/A/QUg0i3Q/sD+c8kilF3WePxaapMfK28W/emohoyaTxT96CMf7tInNvznK4KOLJ80/e3mYymns9L+7ssy+Okb8P+7slSVtEuQ/lkl+dt+S5D8E+P8Dhm2hPwGM//WpbH0/PrnfIymlvr897g5zdb+oPyDncj4zWcg/O5I5dqnQtr8rNDd+qhfwP352ZiHJk/o/86yBOKRZ7j8pcMGycPnuP+SjTBzRorw/LyVi5w22qr/6FIEBRBHPv0tmCDakjsi/ErStBuEL0j9IZnmSLdjLP/4WZ7WPzfA/fTtVVjKs8z/4D1IWqCnVP/zrs+edYtU/O4S3MJYOqz84SoN7Y3yKP2VaF9gA17E/x0Y6CHyztL8HcuSwGXHEvzs8f3OwTsg/GT60jPTI5j9+dmYhyZP6P58xj7LlqtQ/Gz9/brC11D/4h6GQGQSnP3wf+Jti6oo/NIot0iIEsT8swHscl8Szv7lm8hJKDMC/zQTYf8h4xD9U4WY5ImDjP307VVYyrPM/MpAuH6cn/z/NKsuQrlEEwGbDl43Aau6/uPOdbxaFEUAiSJ7QSJPqP4ACKIsWQaE/Ogwh6eD4AMB7Xydqxj8KQA4Yye4Umuu/PFOsgorGCECQIYgu26Ouv2bTKwLRPNm/jGxv/IEn6T8xqi+uk6wVQOgE0B31Wdg/AjuVYMG6BkDiz05TWBbMPwpnkSodr9G/LTJOFITw7j+QJPadN6EaQJiy/ZbLUiBAMeMdb0QCAEBnn0YYnL/jv+MJi+scpL+/OErR9s4mwj++1IifEb8vwG8khzqPKBlA1t/VLexnG8BKAFpi7uzBv2LN5OScbP+/OErR9s4mwj++1IifEb8vwG8khzqPKBlA1t/VLexnG8BKAFpi7uzBv2LN5OScbP+/Qotsj0RAuz/Uhll9LVsSwLbNxqkyRem/+Da9dCJpAkCRSb4czOzPP/De2ihIDsy/s3yQBq+brj8wnvrB4KwZQO7zZNFUJeI/Mi64Ug5gHEBZaCG9s1PIP/ytRrlVWNs/s3yQBq+brj8wnvrB4KwZQO7zZNFUJeI/Mi64Ug5gHEBZaCG9s1PIP/ytRrlVWNs/mI5piwpb0j+kIDu0XtwGQBzx2d4PNQdAGBCZ+EA+8z9E220xMpzMv6jVTkwUDsI/MxAytjgk0j8EzFi5YtoGQOsqUAwROgdAesBBOIVB8z8Di8zT1PvMvw1ZLTbxC8I/htcevxLcAEBrlmlHOP0GwLnvNBWQOOu/sIQKe/0hEkAAgqTu9YztP8dlqM12OLk/IbYzCf3dAED1J3f+UQEHwP+dWxDQM+u/ih4P+PEiEkArWZEN1I/tP9bCfH4aJbk/AAAA0IwTB0AAAADyrUE+QAAAAGo1LTBAAAAAgv+wQ8AAAAC9E9VDQAAAgMn3sVtAAAAAO89GU0AAAABGzeUwQAAAADq6EDlAAACAPSGgV8AAAABJMaRTQAAAAFKo5h7AAAAACiBVEkAAAAC/OYsiwAAAAHz2dSLAAAAAUDuuFsAAAAABZKojQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQiip1ZpfQ/AOreQSi36z+Vyp612UOUP4fihubgJ5G/akLPtKDy3z8nOgQpIyrpv3CS06HelrG/+iFM6/Rjsj/cpwQqefbEv2hd2SLQx+a/XkqRBgcJuD9QJqCabWriv1+DIcEv9aQ/QN+hvXEr5D/vzDhssA2avzpUn+Ez2sW/OEIWwWYm+L9wcpVYgp3wP1ZMLWSwLfm/z4z+bfzG8L+zeXqQBO7wvznHv/HTJuw/nW2nxQIsAUBmWrzmtwfEv7gMBOROxLI/pzZQfUG0AEA5+XP1PBHfP1s9dngUs/q/ushf+khRC0BPedhl984ZwDH289baGh7AkOFU5iWEvz9cKqXHCrEWwH+WKZl9tSJAPCDjBeAqAkDD7xQF8+UHwLlg7ye8O9A/6GfnuEfVIECgFQ35uYkXQJhpNqapNu4/Xr2CQtcb8T88ilETMZ+av4XVnapjhX8/U7gFnr+Cub8wcuw6nRGhv5+q6zazZABATu4F/XhEAECYMoEnx/mxPxCv/IMXb1M/kXZV1kBKrj94dg1M5TfNP4Djw2lxn8C/cVbkh2hy3786mw1eq0sQQAscZ+ie0CFAMCmRzLL/sj8M2N4QzIWwP2uhbA1VTo4/7GZk0KssNz8nUWrIlVhxPw4xF7ui25A/Xr3eZLUdmr9/us8HWVG6v5ExEB9mmNc//QtahHcYAkAAtusBVjqtP1j9zhpd750/kt0Rn3dIrz9y0Sg9ec1nP3fWm1+my0I/0IWx/oa5br8TdIABDpvAv8PxNQA92Mq/uRvz4pRdkL+65PaX+3YaQKIMjE3yTNc/oRQIrKYa1D9Awd1ZRMGxP+TmL50wxpE/0PXD00aJoz/q6AsDJT68v7lIBXP5uMQ/2N0B9n1p4L/DWRBEn93wv3zX1/7KARNAKlPDFCOG7j8pIUFba43uPzz92RzbeJg/lzMAG/jcYb9GpTsvzwmzv+uyV+JfJ7S/1L9WH6THu7/9TLqR3ODCv+yJkUB4efm/XiGebqoLBkCZBIJcW57vP+LRGJlQUPA/yQ3LkCQuoj/IN8ctSvoxv0yrX1gPjMa/aELjLfYbWb9heh30wjbOv0vri6nY0mC/aVq99IUZ9b+7ssy+Okb8P9RBrMdOz9I/HsJJLqyZ0D+EParQKdKmP7GsaFlB/ms//qEgyPc9aL8bIKa4w7m1P9Nr0HQlnqa/kFYYyjAn2j9sRK3oXvLtv3zX1/7KARNA5gseS1DB7z8mPGltiU3uP0ph+Kba/Kg/amrA39UbRD/QBYXUNghrv9r97Xcefco/4UZjamBUZb8IqGnejnzWPy7xFQpIaPm/XiGebqoLBkDuHhXzBrDxP/qaB2LE+/A/a/NuyAzkqD9NdpmcOZxuP5+2ltbJr5K/wCyuOjK1yz/xiS927SiYv8eRaGNf6dE/AKe/bnne9b+7ssy+Okb8PwkCJhY+ieI/NolUO2gX5D/kpm0Cs0ayPxNOuroCLI8/llXyokltx7/CTcp3kEuqP/1WB8cAvtM/aJhr5UtZub9ROh3BhtnuP352ZiHJk/o/M6uFx6cC7D8yfQnxxX7tP8u9+Z5lv8M/bytlcIKrsb+D4Zo5Q1fSv2zz31J4Ysm/4WVwnf1l1j8OlDi5jTTOP5fDVqe4CPA/fTtVVjKs8z8gB0Sq4KXZP5UBCJbvStk/K1X52WWYoT/QWZ7nP9owP1ZyYSJwcqA/2Hx65VXOs797M4Q8YtOwvwc9FKOHzcQ/t7l9mlpt6T9+dmYhyZP6P8/x/OZMZNg/W6ZdT38h2D/x3NoNydmbP2wLgqEZ2lM/Y/DjwP5WoT80ANRk4x+xv+f5l9EF8qu/MEri3ixAwD80HPHJKGLlP307VVYyrPM/qOGPpkuE5D8sZMBPeRcBQBDkvOnU5fi/JPXpxBUo9T8+Iu3KhSe4Pzk3aRmdGbQ/jI5Kl8AXAkB6DFVUBSkRwNzR56Exlvg/9F7uNH4KBUB2L+su+W/gP4D7M+nj7tA/Fe0Bw6T0E8DAj1S1SbgYwCryUjpkvuk/yxA1flTEBkBcqwtwjx3Kv1AJaowPw5O/QJFY0HIWw7+mipta21MBQFN2W0g2LBLAca1TQ0A9D0BCvkZBsn3Tv+BHF1t/COk/lj7kQEp98r9gDjNQ99O+P3f5hmXxdhLAYFweFW0vCEAw11F9qmHBPxXXdtJ2NuM/lj7kQEp98r9gDjNQ99O+P3f5hmXxdhLAYFweFW0vCEAw11F9qmHBPxXXdtJ2NuM/3N8Zzn2H7T8w0vUDvCsDQNSNvEQp+/0/+MPqi8xRCUDczq+bwvbVvxP9ggSpWeW/ZMffVLn+8r8+hWFk2msIwE4K6tTbdPI/sMGQrM2x6z8LulJeKNTgP8qjGHn4L+C/ZMffVLn+8r8+hWFk2msIwE4K6tTbdPI/sMGQrM2x6z8LulJeKNTgP8qjGHn4L+C/SNvRnw9Dvr/FQ1d/SYEFQARTKPTURN+/OFKoNrAU7T8hgx8Vumfavwxmf4RUuqc/ckxbwlU6ub9jBLk2SY8FQNd5yOhZIuC/sOAYJQTo7D+5cxl7C0TZv2HBRgeqM6g/BQopz/A95j/qQ6JBU28AQN7Gqp8urPi/EoDvEzrN9T8siwmS/m+/PxLi6SnwDLc/KfTwI6e55T/GMkl7UaoAQMKzf8jkuvi/PiRQKzWT9T9Pt+gb2Zm9P+YVWVsYoLg/AAAArNsdJEAAAADIh1klwAAAAGDBSEPAAAAAnLZlKkAAAADbVwVDwAAAAE9rBkJAAAAAx3BkU0AAAAAX5hlBwAAAALFbRENAAACAzuF5WUAAAABCSG9AwAAAABjWe/2/AAAAoK76D8AAAADF7LIjwAAAAIy1rBvAAAAAzMYWGsAAAAC594QgQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHs3XKe2i/Q/DXejD8C07D+0hM7sTk2Bv/eiv1yUIrG/QXKd2Dfz2z+9qIQ/Wqvkv4V20YjsIoS/3uIqV8corz+SwByrztLGvxGSUFr2Gd+/8BcWhtPrxj9C1OW31CTRv3nN5ha1e7Y/HJ2JOWnS4z9scViZWDaNv3ble/BWs9m/C3IvJzs+9786Kqza3T7wP2iFRyETcvm/JiSZ3cHJ8L+iRTxiFzTwv4H6wpGwO+s/lch58RHICkCQF8uZS7/Uv54QAwsp8ss/NMGkbRAHxz/yILEcM+TpP4jsZ3i/egRAqrIQoUAxEcA2XFO22pgRQIXLN952sxNAjFJ8/8mzBMD3MnbPxRD0vxeHlHttyDDAihzztNlJOcAiIYhNCSjMP37I7ffxkdU/d8TuDp1EIMCU6fTxSB0RQGiX55iGrhPAI+PJwhUe+r+EajnQaU7XP+sPFLSgtnU/uQ6+oFKt379GQ4eNYhf9vxdfHg6QQQBA7e3AfkJgAEDl0mKNxp+yP2AB7RLN63W/XSdGEGsgyj8ilzeDa2bCP/n2dkjnrtq/U//HSjeW079C+8c57EkQQAscZ+ie0CFA+ZP0UZmBsj/BSAiSQtKwPwu7CTK0bYg/NIeujNhLRz+ytI8DCiZ0P6vlqhLgo4Q/rtVwkzOFnr+64vFcKZevv/l+5Zn3zdc//QtahHcYAkAFTN8MmO2qP33Mb7OR6Zs/Pf+b6wtFrD973H+oM+p3P4pQ3QR0oTs/8V+N360/Yb94PJxXmoGyv/ZR2Y/8Ob+/b6O/uKK1hL+65PaX+3YaQJXxu/18KtY/YKVIlSli0z8sbtcpP1GxP6HRH3jfupQ/1ZVo1JykpT8cxpc8GB+7v5jQ6IIt6Mg/Q5EfX56k37/n/YT6blvwv3zX1/7KARNAXGMKDIhf8D8tmoFxZfrvP3NgrH4p4p8/Un0ZUjnRKr+e+NdKxGyFv5cl1zEaHsS/07bRtyaqdb91GxoieBvRv0dpThN4Hfq/XiGebqoLBkBQH8vg1rnxPxwqnZhplfE/AWrZUQGNlz8YN7MqMDiBv/4AxQc3BbO/xzFpsV6Tv78vNGozCji4v0sjSpFVGsS/ZbC4OY809r+7ssy+Okb8P2Zaa3Cc9NI/ZZqEj6vf0D86Ys8fAz+nP/w+4DCIuHS/4IF4huWSlj+Hq+nKrJK0P8/4/y+6xK4/3saSf/YK2j9KcfwDoD3uv3zX1/7KARNAh2vnxLgX7z84KoEsxwXuP0qDnqEsXqQ/ElRPR4j3YL+A9nY3sr+DPyOnWAa+Icc/ePklauzmmz8POFO766zTPw4ACQYvSPm/XiGebqoLBkByLaNKaj/xPw6yqUdOs/A/T9vpIXxupT+eeBUmbquAP4Kb/FcIXaa/s7pyDxzCyD/x9r+/DC6tv5G5TnD/JtA/0dmerF2r9b+7ssy+Okb8P/U2atJP2+M/THGNADud5D9Gpha6/ZSoPywRj0iFloo/nh4Mig+Gwr9Y/k7D1QiwPw0l8uOk4c0/IBjn3YoZvb/UlnZw/ezvP352ZiHJk/o/MIykYRnQ7T9izqmt/zjvP2OAlbOdeb8/fct84cp+q7/2HHMUWW3Rv2YOoPddSca/+QgSTmtd1D/Qo+XhWVbJP1ZLZHputfA/fTtVVjKs8z8Es5Q6AkTZPxHFmL7qutg/Mklz88igpj/T+k0krot2P4YKf7jDnqQ/YvO6Vjn+t78hxiQlRfC1v9qKxPC1fMk/K0sPG48D6T9+dmYhyZP6P3gjzhPiedg/M9TQXQwL2D82FAtIe7iiPw/dClXVF3k/bv9kHAcRpj/j/5WUq5K1v6QeR7btbLK/VIhWDqxFxD+YQMZntUDlP307VVYyrPM/BuOOs2r/6r8dPP1/r83gP7FUxdP8BwRAMCqVdf1lCEBuTxv9+HzivzEQP4WW2MU/vqm9TiPq9r/2g4OimQQUQHl/Cts57Pq/AzQPLNo4AUCCDcsPnsXpv9QR18mJQKs/ozyLZbvDCUA9YLc3ufUYQOvRi5FhUu6/OFQ0siwXAEBfQCAyIofVv6wbkXKqgsQ/1W2Nfu86B8BW0ugS6KElwDBm2t7N/wHAg6OnxuER9j+QTwDFXQSBv1iso/+uofK/V0cAjRwnCECAYLORzocrQK58H1oWZAbArxBMfK3sJ0DaRcLg9ysEwPBcp28w3d4/V0cAjRwnCECAYLORzocrQK58H1oWZAbArxBMfK3sJ0DaRcLg9ysEwPBcp28w3d4/YOXXU5y20z/c7AKkxwL3v7WgzmqQmv6/D0y9beMM+z8os2hrUZzQv6aK9Oy0iOA/uiRy79vG8r8zfNotzLAVwNahFBle4AHAoKpjBMh/oD/QlC1jZyXXP47+ehjKeN0/uiRy79vG8r8zfNotzLAVwNahFBle4AHAoKpjBMh/oD/QlC1jZyXXP47+ehjKeN0/GF4bdKq8wL/GL7dNXOsLwG+tJTuf+OW/64gwQULrFUDQfQu8pvamPxCGMlVw4rG/u5YPCdBs278vKz1VXG4MwHBAHtf2Gt+/eITt1DIfFkAi4rXmvJXLv5vfqf0b3bO/uccGBrh95b8IevfHsLmyP+K5uT5bpwRA14SxpXwkCkBQrj1jUuXevxoufhpzxM4/SLES25O69L+oRHGTlh/8P3jfUzufbAJAUUkxNMhjA0CCIGs7oN7nv9SrxU3FQuE/AAAAxUVnQMAAAABaYLA8wAAAALBNrRhAAAAAY0i+Q8AAAADTvrYxwAAAgMymK13AAAAA4PicUcAAAACHcWdDQAAAAOcps0NAAAAAR5ZYVcAAAACiibVJQAAAADyJTR/AAAAAgA8M+T8AAABKJoMbwAAAALtQASHAAAAAhvyDIsAAAAAh/c8hwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFCPvBhlc/Q/yHZhyQjZ6j9fgMMZxhefv64s7QqeXq6/tLdBhw5I4T/kb5mhiu7lv0sB8p2GLaU/ZDZdmAwKvT+zo6dojf+kv/IrSV2ld9K/ZtEQifJMpD/UcTxC1+zfv+7RLV9Z6KA/kKHAN3kn5D/Zpv6Ydlupv88NmR6QcMK/IAD55eDU97/3ULscOnnuP+2gxNNWMPm/azZvWDvI8L/frKfQ0WfnvxMZZ7ifz+o/GTV/FSUiBUCIrwNMhgOuP3uY1NcJX4s/r7uie9WU/j8sH65ekOX3P4ClVKqRl2Y/VDBK7dkA1r+VRh81tf4DwC/CQOF7Vey/Svau8YHL07/tAQZtRPYawBpuIi0ykRLAj7BFmoYzJsDsDMH96l65PzN53XiiHtA/urEbS+LI4D9Qli4QDyEBwG4kARaLI7s/GZ0CetW727/wbbX2batlv056uCjV4Js/S3sS1B7NEMA+FjMzjcIBQLFaY77WXgBAnNYGVzaAAEAm4LvgFKivPzqXTQG09GC/iAqIEJfHwz+drQFk2R7AP+fuUnhZk9O/roRkfoWb0b8ZXxqA1mAQQAscZ+ie0CFAmhfvB5EMsz9+4VB+cmKxP1vX7QXx1Ik/RxyDiFw4Yz/1I3DUC9AnP1XgLGhNjIs/31IKwBqGXb9TuSwuL0S0v7qfkYpPJ9g//QtahHcYAkAQ1Ch2T8+rP2zQMR4rNZ8/I99mk87Rrj+zstwMQ2ODP0tbDms+z00/d4U7wu2GWL8uAL0gcvOpv9dbY02Bvcy/7Q2MlgjueT+65PaX+3YaQIgWplmIYdU/5iYjlFu60z8y4HXrAdqxPyWZAWMTPJw/RZFt8ThKsD+DT4RGqDu3v5B4eoa2nNI/ou4dIJv73L8hpdaEvjXwv3zX1/7KARNAZe0sWE3k7j9iGktJYHnuP1/eCx3TA50/AZpxTVoyZL9n8SRbMqiav0FQ/vDVDcG/Cy4yR2thmb9svOAm51fNv1X03h8bePm/XiGebqoLBkA8z6GwLHrwPwz3ArPdhfA/xtdWFAPyoT/diLmTR6+Pvy24kcfexMC/upcPfyyWvr/d5iA+eSnGv86WB5gxNsS/mzavUdpk9b+7ssy+Okb8P+b+9eQod9I/UQAwep/n0D8onJxKqXqiP7hefwwFV3M/3RjifadEeb/0bcqkRoWyP4lXBYn2M7G/2KqrD66D1j+liIPCRUXuv3zX1/7KARNAtGkGIuaK7z+s9l8pWLLuP59X02wFf54/BOmdGIuNUr+KIGmAefF5Pz/vny0BT8Q/M+lHZ/RDiT8Ve7nvjjnRP5UH6w0Dkvm/XiGebqoLBkDZqfal5pnxPyIPIzDCOfE/ZqQG0pgcnD8kldNdWBYuP2mzut4obFm/S+0yRp9PxD8SkTvjxVBgv+bAFSL5Eco/fxnYcToH9r+7ssy+Okb8PwhAcqWiT+Q/y/4uUt525T9cGc+zF7+oP/Z4ThNHj2U/m/105oGlxL9rHpAKm/2KP9WxSTIhk9A/oup4Pm15oL/jgrXJkTrwP352ZiHJk/o/GgiB3Sd77z9SalmecAnvP/eqKUuNQsE/yQWCN31TsL8XsUVX3uvNv+j5bXf8A9C/emczxNlk0T92vXQkbDXSP/njWks63/A/fTtVVjKs8z8drgr+5uvUP+Wfgv9astQ/5jVQUoFgpj+XlHySw6h/P0Oh1tsQDa0/55Z44cYks7/QUMsAiAPAv5SmzfM+Esc/oaLJfwGl5j9+dmYhyZP6P+sJsFifD9U/mWDmObNn1D9YByb+9zGiP3CBkWNxU4A/RxKqv8USqD++8o5qis6zv7ClWBwzVbW/xP5t0sOwxD/jGaAtV3bjP307VVYyrPM/f9oL3KoN4r/Pv96mzd0CQANsl9ZrdqW/CnIgU1s7+j+Ol70SJ1zHv09x6onrArK/A+EuMq2M4j+ALTroDsq/P6PUDw1qOtG/bNYmZlRRAUDaGQk0o6q0P0T17EQrzY2/hEWfXNtMy7+1d9UcLjDRvxSV8VQLX9a/Z0Ro/kWpAUAAOowicfElPySgMKAvz6a/rnKObAgB6T9oAGezbiASwMaLjE8HVx3A90U7P1JSBkBYFbHeAbjWPzGuHuw7zca/ExOfz7pS8r+ibHwNkYoZQESBiedpAxvAXJIdN0yPHUCOtmrk4izyPwyTDqCujNk/ExOfz7pS8r+ibHwNkYoZQESBiedpAxvAXJIdN0yPHUCOtmrk4izyPwyTDqCujNk/iIue/Y1Fyb/2KkSNE6vLP+uMAtOGIeK/N/KUYeaoAUDMfsaMoUh+vz680z00dq+/ygML/7pGxD8fNsKr/bMCQLEWbTO76Ni/FlSFz22/CEBNUX4Tf9zDv49cJdc9P7K/ygML/7pGxD8fNsKr/bMCQLEWbTO76Ni/FlSFz22/CEBNUX4Tf9zDv49cJdc9P7K/7lOhXU3czb/8v6NvYrsEQMpa3yyWDs2/QbdicNik+D/A7RoHksl4PzSpCgZg74S/O1k2BbOXzb+k2JF4HL0EQGL/Wh25PM2/laZfMNCh+D8w1ORh0SuAP6RbqU1t7YS/dN0e0FXm+z9am1wukYbwvxCuDizTges/gyqrzc0KCkB1itFH/AHxPzUZ231Pm94/gSeVavSiB0DeduiQ8asGwJwtu25PQ/U/0Ib8MaEYEECIcAjamMv3P4Qsv8vTcr8/AAAAZhicMkAAAAC4fWghwAAAAG1aZkPAAAAAKBBXO8AAAAAaoPFCwAAAgMhA01vAAAAAgPwqLEAAAABMQJdDwAAAANF4ekNAAACAyBrLXEAAAADSrhxSwAAAAL7EaSPAAAAA3u8uIsAAAAAJBWMhwAAAABBgQRfAAAAAVEsRI8AAAABSkUMVQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACLLxkIQiTtAgE16HYz1KEAk+tk/rWL6P5gezfmlHizAgNv9aUpjOcBvgcXqLK56QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLBU1cAYaUjAFDlHSUUpQu"
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVeAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYFAAAAAAAAAAEBAQEBlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksFhZSMAUOUdJRSlC4="
|
39 |
+
},
|
40 |
+
"_last_original_obs": {
|
41 |
+
":type:": "<class 'numpy.ndarray'>",
|
42 |
+
":serialized:": "gAWV1jYAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZgNgAAAAAAAHWYwhfQPfQ/LmqUK8w26j++O68RMUCwv/SjEwlLuZu/Vqf1fio44j8B1+zx3Evlv1LHotn1U9G/XgZbxetzsj9o1Dbxgd6iv6q5IYndiNK/DRQHDYEZ3D9sWlrxlkG1P0btBmg6ybQ/mFi9hsrn4z9oJcphS1zTP8FjRhfuCeC/6oOAfhq997+7ttvY6gTxP+cJHC30+Pa/BUv0dKPQ8L/0q7Vk3oLXv30YPiTRI+w/2uDfpSDLB0AWy3O4TJ1jP3LKN3Wfqb8/xNeb0dkw5b+JlaL1vfYEwH114DmbyfE/sQw8yvxx8L+FDSPY6UEVQJWB/x3dQMC/E6q4h2tg/j/BaztIKowSQLhO78YEtui/kU+sxi10D0CIZGY5PuXDv0e8CvEyXvc/p/kPYGfjEcBmy4PDoFntv0hGr3jmdM4/8JGDKUIJ1b8EfJT8Q7jmvzlfFTpAULY/EWm0aXBO/T+9hi5C1wOhv+d+PTLoRwBAu4sT1HCYAEBojdmfOLW0P53UdG2Pbnq/bb8TuO8s0D+LTH8gecS4P3m3kovP0uC/fyRQbV5Tzr/W1RC0YFcQQAscZ+ie0CFA1GyERpomtD+ZCATPCVGyP+iGanA9f44/9BxNtcwBVj8YpXU5RqJyP4yrInmpv5I/riPsYuqcnb9EScUSgo66v4OFdAwsrdg//QtahHcYAkBZXjNdt82rP7BHjYN216I/+t4euZrOsD/8tkwxPiuTPw71QKCvrWG/OpkSuuDyaz/b6LXlSkfEPzXnGvNuJdC/+acHaSsGrT+65PaX+3YaQI6UqKT0n9I/otHPP3zJ0T963hATFyK5P8bI6Z5EoqY/zUHK++GSsj9zG4IPaGW3v/euOiJ9H9s//c5JJ6Kp37+q7MLrvVnsv3zX1/7KARNAMO0gIMRy7j8CXfv5VvHtP2Y9pWAjeaY/F+6yOqM0kz+rVta56uK6PxghKEP+RcS/F7naSlG1xz/8wZGnStvRvyxXU475EPm/XiGebqoLBkAEAmHy+ArxP9qJq5b94fA/8K5Jxf3EnT+cR0wOOpGHP5wxG/2St7Y/uO4MkclSwb+umFcqeY+9P6Qhwg28isa/nHrRMo269b+7ssy+Okb8P0SZG/ZFL9I/VRaVGaWl0D8SGMrGe/CgP8tVjXm5AWW/WKNZjHiShD/UhFSrnxmyP5o01Gft+aA/pEAzXZe31T+sPbNUjwPuv3zX1/7KARNARdao5r2i7T9YKJ8vwSvtPxvqZyCPTac/6L96MvoCkT+rjjpc59G4v811s7YVXsQ/41/aAfB6w7+tt0TpG9PRPwfiz4U+yfi/XiGebqoLBkBfQ+R7tgTwP+0ut2b4LPA/Z5FhEKmosD++8ZNR39+ePw5/IQ5Nwse/6XsbNzczxD/r2C6JggXQv3bE+hREPss/3o6v3e/29L+7ssy+Okb8P45u0gzabeM/bDoStOj44z9OkY7TukKiP1epoJdNOHq/E0Hea1ysv789V4xj99WcvyqnoaZYKso/dTyAD1croj8GUbeTzrTvP352ZiHJk/o/D7LSFClB7D8Lq1xt8G3oP24zqDYl/cQ/Du4e/Ad7qr/+PyruXCbAv3xSw3SBINS/yWxrqwrrxD+TRxmNGJvZP76G0ZBMgu4/fTtVVjKs8z9BaWFsIuPPPwYMzzR6NtE/cN6Le1lMpz9T+CDQFMmKP6P8SZsWCrU/iNRR2XvZp79cIn2YsgrKv6PKRSBpEcE/79RQwz3D4z9+dmYhyZP6Py8d7a+3bs8/EDP5fydQzz8+MGDSHA2hP9Pk4W36AYw/OgIxx8GQrT+2srd+8lmuv9RUrB1dj7+/ULweaPhTwj8al5NEYJjgP307VVYyrPM/nu22YeCXAEBHMAxFcgr3v7lQUwXwkfc/ztMti/ldDED9U9bE7MjuP7hAZeMsctA/qOVHmSBm4b/EE3p6xQEIQFgmZ9mn1se/Vf1aLKHRBEBkjKmZwxfTP/BYrquieJ+/BS3UF72f5L/0Pn0QGHgHQPYn6mzrRc2/TzSNlUjkBEDMnYG0aGnSPz8yw5qqLaK/GQg+4GRE3L+qLX/xbZUFQLBFA8te/RJAMTFaF7+gAEAKhonaGfnOv3vp4A9E5qO/DpV0vg8M5T/qAGtUw/Xwv0HCWwo51BJATPZgfBm44j9u3XxH1qzlv0xQscD5oce/DpV0vg8M5T/qAGtUw/Xwv0HCWwo51BJATPZgfBm44j9u3XxH1qzlv0xQscD5oce/xwbcmC7dyL8AIvcGeWz1v4+a0vlG3v6//Z8IKFQZA0C1VZpNT2XRP5SmKCSuIqy/hu3z+n39w78sQ/QEfjLbv8L0zB7xlP2/PSrHd0ImBkAkfihbqk3QP/dfzIRzP6W/hu3z+n39w78sQ/QEfjLbv8L0zB7xlP2/PSrHd0ImBkAkfihbqk3QP/dfzIRzP6W/Dfh+p95NAkBTEkJ0B9Hxv+kGc9xux/U/Rw5l4LsdC0CrGWu9qEzxPzOxM/ekk9M/mxtB5KyUBkA1GIJEv3fsv/M21QPUcO4/hp2w24lbCUChb3UPVWL4P3b8neCttdA/VrPSHFp88D8Ai/JlnnJ9v96F5IcjDfA/WIBSUTrzBkC4FTaQmzPYP0iefE0PyZO/32ZwLMgq8D8sB8wFwTKSP+HPJPvGzu8/ZsdwuljjBkDn/UKPUN7XP5BegLOtEJG/AAAAUJp0BMAAAADfW9VCQAAAAKjMST7AAAAA48BnQsAAAAC1H71DQAAAgCrg/ltAAAAAxXSmUEAAAADTB8JCQAAAAIKliTxAAAAArmJFU8AAAACLNbpRQAAAADcytSPAAAAAwDJt2D8AAAAhElwhwAAAALHnHCPAAAAAzCddDUAAAAChGzchQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAxDYkJuzzlAs3T+Q4wKa0AZpi5orpg3wBBAsv6AJXTAjcc9fB5QYEDc/AxN3l6KQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGaTTlDqVfQ/O8mNg2Xf6z8qiHJBp5qwv6MBGklhsq6/jo2SEm/t3j8iOZ1lybDav12xGqagKNC/VjPVS11GkL/9wBmtf0y0vxUxNol+e+e/wZBwbk+s2j/UHRiUyGfav5y5JzgsH6W/XKNa7GBe5D/1/JoHl2/TP9gIZ7weatu/TZLcxXdD97/0YlYYwEHrP6NFxphYNfm/PkjLusbH8L8A4xNj40XsvyO6Lyc9E+w/Kt2QbNOoB0Clr3DGf0mePworK3fDXcq/EnuHFkpq7j8QbSL1nc75v/sMIcIQ4OO/L8ffhWxQ+z9HlVe1EIb6P2VOY7RD6hHAaFTATZg3FkC8ywqlhJH9PzugCMbi4gpAkP/Q9iLCMEAMsAANmO8OwK5yDA8ufa0/Wl3LumtqJMAeEloFWg06wJrzs3gB9Q5AKeoT7VpJAEAEGLLf0yd0v3hCMUep3J2/3tL+Zb/r27/aQPVt+yKgvwYW8Lhd7/4/vSCAQOza/z+bxPyGDVq8P4ZAPxgjUYu/1v2mECRc1T/A0+Z7+y6/PycgPhtPvua/GxPc+Z+00r/KTwugOb0PQAscZ+ie0CFADgDyrpTksT+yFymctFewP5yVzkdV748/MMJNA6MPQT/3o+Vv+M19P/fFPn3uq5E/kUFzoJDxqL9N9+69lrG6v67atNkp/9Y//QtahHcYAkCynRwhffqsP9r6IwCMKqM/2Ne419WCsT/zgkjJVEiUPwL2dZWiBmK/3DCJIH0iaz8N0/H70kbFPzZY3YHNctK/GQQuaeCjc7+65PaX+3YaQGQ8X/i93tE/qAuQ/eAL0z8cdunlWgq9P+ppvYx3Oao/OuESk2EAuj+GP9dIhpizv+TF3AGRVeE/veOcVnTZ3L++puyXbwnsv3zX1/7KARNASjR7xVMe7D/Ee+oRsDvsP7LiL5RLSZk/bipVS5Lngz+RekqTXdayP4+JIZ93+rS/4pqkqHpowz8WKMe4zK/Dv9gmQicrXvi/XiGebqoLBkArWuXtEtzuP+Bb/cA50u4/9tfarcpTez9q2i33z8NTv+KQGBf0ZJu/DYL0kNggpr8o+oi6SpmivxodsCEMDK6/P/dIKaHS9L+7ssy+Okb8P3Y7qg59PtQ/0/ce6qHS0j/dag4u+negP5UniSO9vnC/ZXbKoC4KkD8byIERaIezP4woMovGn6s/boOe42/v1D9LZq23TVPwv3zX1/7KARNAWuS1NoED8D/C+zkdSDjvP8LjZqgLMKY/ouHm93i0iD/k1ergu4qxv1fFMc5TssY/qrOaWNvAub+Kk1NuYRrTP4zh2yJJv/m/XiGebqoLBkAaPmfnnEfxP1E9Jvc+IfE/ah5dcnIGrD+oKgvtCIuZP+mzXfQ11cK/8R6EL6qyxj94AoRnsHrIvwRgeDbMgM0/KR20safA9b+7ssy+Okb8P0LyB5FqJ+Q/utL8T3+p5D+ZZU/oJ6+gP3Keje213Ho/eFgDif1lvr/eHVLoPd+mP2hCtvJ3Gsg/1uK/7QA1tb87TDFA4CHwP352ZiHJk/o/vIwkFxq+7j+buC8fI0vvP6sMIvJnG7w/jsn50kVYqr85z1Lov7/Ov7iXXW2Iysi/bnxqfFG90T9x1x7Hre3LP0kluUVR6vA/fTtVVjKs8z/88U73i7/UP4hZTmho+tQ/zuxmbMfCqz96xtu/Rw2MP+EgxgC2QrI/kajB3FGrtL/ca9OtigrFv1RvgB8kocg/FPAo44OD5j9+dmYhyZP6P5g7U+83VdQ/znpgzblO1D8493ZrkZSnP3xTfZW/fow/uT3JSaMbsT+3/5cXyQ20v13nBDUCQcC/E2S7ep4ExT9eiUq2aijjP307VVYyrPM/IVCaAOI1/z9C1wY52FCzv76cc+a97dK/CJnRwln8B0AmhHdOAfHpP/iEDpxFf8G/btUFkyXX5z/u8WO9Hiv2P4tHTGjqifI/sCVYHibSBEAMaqq+1pvjPz95qWqZA9G/HH/UEN/fBMA2e7Cb2e/xvxRjkRA7Tty/mD325qNQB0ANDF4QdkXSP5HKlFo+Btq/ZKB1M3/r8j+O1WjtjiIVQGdkLWWZwAtAZHIVZE2ZBEA1grx+b77Jv5jJuWHmBOc/VNwl8AUE678zqErkNqAmwA7RX/QwFwJA3gnWxItQD8BYJnj9qeLnP5aY1nn9l/a/VNwl8AUE678zqErkNqAmwA7RX/QwFwJA3gnWxItQD8BYJnj9qeLnP5aY1nn9l/a/yECEjKY41z/mwxv4pi8iwDQtMYxCrNW/Xre6SQ5yBECY+1yUbybDP1nQGURUUOK/wV1xnGdRzj8iaLeuY8cwQOpPRx2MXwZATEbSXy+8K0AyTfEtPzbAP6B6npNrVbI/wV1xnGdRzj8iaLeuY8cwQOpPRx2MXwZATEbSXy+8K0AyTfEtPzbAP6B6npNrVbI/ELF2LGb11j+is7MS4RcJQJNeyIaTwAFASMdElN+I8T/gmthHUQrBv5HGTm3YVMG/qglFivU21z9A6F25zxkJQCgOCuk0uwFA7GfAo5+F8T9g5Q78ipnAv+GGbRvxU8G/foLDFF/oAEB8dHUmy7PdvzyQTZG0xMi/8FQHbDloCUAXJ1mBvvnsP+r7EoKXUK6/q8CXPgHNAEBsOgUbB/XbvyRqM1lC3Mm/s4iRIpJOCUAotBSe3tHsPxEUdRM2PKy/AAAAFaxYQ8AAAABStGE/QAAAAHQ34UPAAAAA+JPELcAAAAC5Du5CQAAAgCP3kl1AAAAA+XH+U0AAAAA2Byg9QAAAALGBsEJAAAAAET2UXcAAAACo26RNwAAAACY1WiPAAAAA6T6cI0AAAABFSF8jwAAAAKDfqCPAAAAA/5E9I8AAAAAJjt4hQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANzUzxJAn/Q/bymJoe2M6z/5OrvidG6DP/vKQH33mJy/HkXuZSFA4D8sjaCWhPbpv+wPegc3unk/vag0zGndwT9bwTHriV/DvzVgZm4vYeS/4sBf1xivqT9J02asgy7evyT6Y6Ssia0/o7g8204J5D+iqEWlMEq/vzKYyiHmd9G/BiiB93JK+L/TDcKvXmPwPytfGKHwK/m/To5GDvrH8L8kO4ba2s3wv7chwuKIJew/qAccBNI/A0CGr5dTQcbFv8nhxs/vLbc/Qjd9OlgP9D+vibxEYFngP8k034UGJPC/hMt/JPm48r80xagheuP3v9J23r7AQum/RNHkmQOc5L8FIuyGfQ/4v2hcs+2igh7AVqcgVVdLM8CYAaJJRXDLP6udJffRR80/MAD3RgsJA0BCVw9Wh+QdQCKbVbf0DNQ/b8iMUwwj5T8u8bB3X9Oavxf3+XkX9J0/CkyDDN+78r+OTo0kmGeuP03Bqm6SYgBAOg9CVy5AAEBGaUQFmvCxP7JY2G5EUmk/XIODELtzpj8GWqXdbpDNP0XHxARoxba/TBiUS0br3791t3MdC0oQQAscZ+ie0CFACtuL1boksz8R1b7X1V6wPxhBL2f/g48/HaJHnAqTUz+z1kZWJORQP++hzc0bZZI/uWEfGkOOeL/p00WHIKC8v0FW6aklidc//QtahHcYAkDaHaJo46CtP0yjzcQFWZ4/iEVduwx0rz/c+bGSpsNjPwgKXjS181A/jxLEyuSQdL+mW2hMANXAv73JWGHYPcy/ix/7FEJJhr+65PaX+3YaQPH91/FVpNc/GIf+QuSk1D8eLk5zRn+vP3ugCb6+1Yk/IefRs68jnT9UQo4XK9G6v7ogO23krb8/mKiO90UT37+YlAFdBkLxv3zX1/7KARNAW6fspTqk7z9iuCA4/r3vP/icYkx6zpY/V9nLc4kRbL/cDGJGddC1v+a1QDN82LK/DoMjxDYiwL9SBZZUqzrBvwBNEeWZ9Pm/XiGebqoLBkBtukWUZpTwP9x1S5RxEPE/hBpYppiXoT9nMHKI3iVUvxWOGD09psa/3YuNJ/Fhfb/WG6+Lo6LNv4fmU7f/OIO/6z053/Wb9b+7ssy+Okb8P5mOv5kL89E/8JGmG4jLzz8OEAJNmsOlP9fsJBuZgVw/6NroFK9EaD/JHCuFV0m0P04t8Rgbxpq/fgI5bCBV2T/oXH34Nw7tv3zX1/7KARNAR7WKC4Hm7j8Asql793jtP2k9JPMi76g/gkW/qGGASD8GKr8Y1Uxwv0PtYAKLA8o/WVbRa4QRSr+dMTsgAVHWP97hlv5GDPm/XiGebqoLBkDeaaVugEjxP5jGNHAzjvA/AqNLMQJxqj/TdAnwsDV9P9aAYzfYKqG/aJpZ29gHzD9TLwTyg32mv3e2ekJmXNI/Dg4FnRuV9b+7ssy+Okb8P9i05x6I9eI/75mJNc2L5D8qKJKuT0+yP9y08OWvkY4/rHK2xenXx7/8a69JXX2pP8q5iN4u5NM/dcLWYCpruL8j5XHSFjfvP352ZiHJk/o//XGC5B3B7D+sIvKTiwTuPwb12ZyyGcM/96ctG3lCsb9lLGJ6lQXSv/XQnIG1/Mm/iebnrkC61T84h5/cE4XOP5vgR5sbQPA/fTtVVjKs8z9f9v5w9k/ZP/cJhx4W89g/Rk3iCZFOoT8ArS3XHvMiv6AvH398nZ8/D/dt2NZrs78z9MuAOF6wv+1jZTW9gsQ/uwBBCWNC6T9+dmYhyZP6P6XO7z89GNg/d8bWWPzX1z+mf9N1etybP0hdQ035QVI/Kkp8PVBZoT/hSJ7zIeWwv9Tcfdb5Ray/HhrV+/AhwD+rWsynsUDlP307VVYyrPM/oDUbsPHoyT9hFdVP4iz2P8u9ihtdEe6/+0dmkkHp/T8Z9einnoC3v1T34d79cbc/lBsaXf394z8AiQ171yx2P+BFKrT5QwHAFLHiR7T6AUAArhU82pxbvzPk0vO5174/uDc0ONrswr8VS6P8rPHIv22TANMTlAHAkmOEFn4mAkBpzGzL4sGzvwgbioe0r7U/xfDQwi5aDMB+8e4zFH8dwJt33+QwbxDAtefP8cOfAEDX0nxeFULFPyHdxUdMXN+/WVGKiCceDUDz8aovSgQlQGPAlT+gTwnAHmKVgLa1I0DGr0oylCAIwFSMw3MqXOM/WVGKiCceDUDz8aovSgQlQGPAlT+gTwnAHmKVgLa1I0DGr0oylCAIwFSMw3MqXOM/gWvoDidT4D/7DCnlNpn/PwverLq2HgHAWqNrAyyTAkBrWL36tSq3vwBPt+w005S/Hjdb55NwAcAzXG2C2rkTwLijgibeiwjA1EfdaLRu4b8sAlx81SrwP8SvvLSPj7g/Hjdb55NwAcAzXG2C2rkTwLijgibeiwjA1EfdaLRu4b8sAlx81SrwP8SvvLSPj7g/u+nquEKN07+opuEac8z3P07jG89OsNq/Fa0fvC/6+z9SdunHq0fav5yoWwqZb6I/QPvI5uE/0r9sQ7jLjun3P+72s1Ugp9u/FfbxQsDi+z+xZnkOHxzZvwO2clwf5aI/8jI7vgia6D+AQ4VZysfdPwiQjzV2Iem/uAM1dGOHAkCiWS38ATjKP4ZbSyToacw/yGMUDnyL6T9TglCU1oraP8txj9wO4+i/V2u8Fcm6AkC+XzmdpeDLPze9gZl6AMs/AAAAxGl0LEAAAAADsrtBwAAAAKGe8kPAAAAADAlAPsAAAABH5Cw2wAAAADe80lvAAAAADAL4TMAAAADGJ5c7wAAAAKE9k0BAAACA/8AMXEAAAADhjQxRwAAAAASzmBnAAAAAqkJ+HMAAAAAc0yAjwAAAAAKmKxPAAAAAdOK+IsAAAAARbGYiQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPTxd+Dd/Q/t4qvPibx7D/tL7YT+SZ2v0C2oB/6ybG/QhFhg5zv2j9e9djvRS/jv6Z4C95kYbC/PlY9rXIfgT8j6xDt7FzFv2NDmEEjN+C/UHzMoejf1j88B+7Yyv1yP8Pfas9Vhbc/fEO+0oWq4z+tHa46SsK2P0Vmfc+TXNu/Ef0wP/V79r8wOYHtgJnwPx17fQm6gvm/MGTv3f3J8L8HfWcNOVvwvyjr0WtZw+s/GD/093IyCUCopEcmd1rVv6CJ27nEJdQ/hIO+fDQH27+g0VjrTzW5P+mpFIPs3ABAqIeztOl9+r/dPWYiyW4FQIj8zQecYQVATqPcylBs/z8oDXnoauQcQFQMmTANDhzAn/ckAquPJMBawHk7yd7av91zug6738o/hT+o2CFTFsAyzrMxhyjtv92IPEXl7Pu/90A8c8UL978OPmkg9UmzP6CS8E9Bx1A/BaUJI3tn8z/I9OCVDWDnv+D3r6y0NgBAutyf1PxbAEAm2xGocP6zP/riv/byyH2/7Okm7eUAzT85vJ0TBcbCP8UI1Qca1N2/J49sPXfs079OMnln6UIQQAscZ+ie0CFAyNpdYwBusj/0hAiqDNqwP+brTPhoH4g/Y0DOMfRfSD9tItkmSo12P2tXeYfAA4M/G0/3CqASob8Vr5XCRSytv2dgtmMtzdc//QtahHcYAkDKNvR3It+qPyJswK0+D5s/jwPvAH/sqz/QXHkqX/Z8P+8HXeinQyQ/2vpo35ioSL/AV9yl66iJv6z9JDOK9r6/agJtMyCpgL+65PaX+3YaQHV7Wc4Y7NQ/4CQdiIxE0j9krM/dJw6wP/RKzUe2YpE/iT1ruwDHnD/iE6N+v8W4v/jmMrTkW8U/tGEAjvWI3r9CJciWVI/vv3zX1/7KARNAWzyTW4gt8D8K0DV56pfvP6RR3NZtWJw/5BrCJFRsTL9McK+4YmqBvycHKtbRa8O/ddrcqypDg78eaxhhJ4PQv6PwEVaH8/m/XiGebqoLBkBXm01z8dfxP+yl9CjAnfE/UwbNn8qmlD8qLk5Ly89vv0ZBVW8+4qC/AXbqRl+FwL9W5Nd5N3Clv3AkMrVK+sS/KFZCUHdE9r+7ssy+Okb8P1PBf2fIZ9M/QaHm8OBk0T+zpxNAIDWnP8R1SoXpiX+/sO76wCKVmz85qOmy5cq0P5+lxvg1a7c/CjynRoXS2T8w60SEE8/uv3zX1/7KARNA8tT07vJN7z8gXDp6CT/uP7UtD9nOo6Q/pWKghpR+QT+tSyZ9InduvwgCwqk/Psc/s9tVnUWjeT8jmbZ4JLDTP/OPWIkjYvm/XiGebqoLBkDyAyhBfT3xP5qqf6svuvA/QIQQHGD6pj+5MDb43AOKP/tFohanVrG/s1AIH3rlyD8DxfZQGqK2v3wyUeXiP9A/weJeKPKo9b+7ssy+Okb8PzFIU0bmo+M/hbDm66pJ5D/u5jQ4xRyoP2SZp/+mTos/5jnaczu9wb+kYY5/B0mxP917lPl6t8w/QfljBclWv79f3lOceLjvP352ZiHJk/o/MFUp6WYy7T9uyB8y/8HuP/LROFLflr8/ha6srLEZq78k0yh+WYXRv+tACAgKWsW/9PoCm2qp1D/VD1lmhHzIP92+c99KjPA/fTtVVjKs8z+g+wODF3HZPzzx2oDi9dg/mnADd72Npj8Ap4TtcCt4P5KpdSyau6Q/Fubdo2kEuL9GTBlM5hC2v4TtdwRcYsk/E2d0wbof6T9+dmYhyZP6P990S7j6V9g/1Jxs/qD/1z8iiZhacaqiP9xdzfyOWXo/QBRDh3V1pj92pp6RPES1vwG4M9F877K/0rb3ZjT5wz/qsZ1BijjlP307VVYyrPM/0iDeRCzF47+lBoCz7gLXv8JSV1d8PABAmrLGQP3mCUAy6k1Ovgbgv0IvB80R+9M/hiVCVP/k8b9zjnLy4WsCQOtOhBx+Yts/iL9QsvRsBUButNijTRTlvyIZ5kWewMw/2vPcPtte9j/eeMr8d/wHQLiL+iLAhe8/svgbsbLFBECvcj0ZttjZvzECtoaAntE/8BlpWeShzb/aHnpZc2IFwBvO9dSJGCFAVveUY5I1+T8in74HTXjnv565ANeUjsi/aD/vuXfnAkDn0izYXxwdQKHWW7zFpyBAgimox9AUF0AjIo33Wxn9v3zyoXdrZcg/aD/vuXfnAkDn0izYXxwdQKHWW7zFpyBAgimox9AUF0AjIo33Wxn9v3zyoXdrZcg/QH1ukUM4pr/oUdLJkwwBwIiBOG5zF+A/0AVE0CIMA0AEGAkJ9snWv38e7TNyWNo/na2JRTjh0D+qoCCw7W70v0BHUS7o/eE/ZMa3+VjqBUBOHi+CPhrfv8fgXyicPds/na2JRTjh0D+qoCCw7W70v0BHUS7o/eE/ZMa3+VjqBUBOHi+CPhrfv8fgXyicPds/1BrCgzxv0D8uTwZWJu/5v+RdHkz8T9c/LHwaqFpmEEAAZ0DACLesP2RVe/jg9tU/kmpQBCQUyT8pGssI7iX6v3fE3fHEJdo/ut7ppvBwEEAAeOk2clxlP2rdn/EQ19U/0NS4zY/Q77/LRgfNUPnoP+WzhMchrf0/9PAq3TaCBUCLgxGU8rbmvwAv2A022sA/01lE3RmJ87+7BgIgFXP3P5ZWM5tv/fs/gjccAAnBAkC86nNssMnpv7Q3WRbIw88/AAAAOkykO8AAAAC6XyFAwAAAAGHBokJAAAAAD2qRQ8AAAAD5ffVAQAAAACEsI1fAAAAACF0ULcAAAADSE80/QAAAAFIPETpAAACAIAbBT8AAAABAjGQfwAAAAFSPAwnAAAAAIhK2EEAAAAAl/qAjwAAAAHHodiHAAAAADzShFsAAAABPDH4iwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALhXu61YwhrA0Jif+NtzUsBZm9BTTEsgQIaQUhcmsVpA+E6mRb+DUkAwGSSf+LSHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPQ0041dcfQ/q6jMEWf36j/DQOp5ayOhv352O5O1grO/g60KgmUF4T8mG6l59N3kvyJBXqKL/7I/ZzSWFzyYvj9SZv8uspugv5qrx+4AD8i/zNQdJ8+nuz+LKfEhnUHVv9le3TwH4qE/5gQUyIEE5D/PY3dGiCe1vxegFEV39Mu/4UTpFWXc979AusrvPh3vPx4ZnSaiL/m/pZryLN3I8L8IUO00o2rlvwSgOzV3Uuo/KGeDw9jmBUCGm1fog3yVP7PI9RXegbA/MYZpSbFY9D8aEaPdMxv+P4LxHD1DsQVAtmB7i4KWE8APOxbDq3cCwPz72szuFNk/cvJVrDSI8L93/G5hNHwXwPBiw1LlTBDAI5cktu70JcAX3LiopziyP642OGcpKdI/fsV2lL0sFUBw/o7EkrQuQCI4/5o1+8A/ei7e5mVaBMDpjE9coR2Uvz5RpNkjCZa/ydJsktLhEMDRm3wM7+jbv23KnNYTYABAHpEFt9yHAEDA9RV8iZiwP1bD2TbGTGe/D8h2omIkxj+yFer5zAnAP5THYyrln9W/4xFu/5pD0b8iMqt1tmIQQAscZ+ie0CFASdYPZ6sjsz8oROfveqKxP8UCzqzw6Yg/90NjdRfvZT/VO1FoYQBVvwryPhSRa4k/JRkvDBHYez/C2KQGRn6yv/BwOi+gUtg//QtahHcYAkDqSLa6CBOrP1qdAkgHRZ8/eh95vVAXrj/9qE6fvt2FPzzAkk4Ypk4/YJPtEOx3VL8fQzv8n52Yv2vP4lHlicq/WfAhjC0FjT+65PaX+3YaQEzysMPdLdU/rRpox7VX0z/cWneZd6awPwBjUkgXGpk/VpWQjOdJqj/pFecLyCm3v6KBLMOwc9A/7yz6nZC73L+iXvXJlx/wv3zX1/7KARNAdPJ+aWCo7z/llKbDExXvP7Kn56VGUZ4/n0rPs12Acb9quMDbyFihvyktk6L7n8K/TaW0vyZLpb/Nr6bgX5nPv3nCScnrufm/XiGebqoLBkBzY9Xd9CLxP9YER2B9DvE/y1tgXRqooT+fs4qG6NGOv+Z9Kboxnr2/gyChdGF4wb/LNTfc1DfDv15WCaH0q8a//O3Mf5jJ9b+7ssy+Okb8P1gEApdXRNI/gwlvcrah0D8IGiaP+NiiPzTH6PZ4K14/8Mofhglfbz9KR9N5WpeyP0TzdAZ/3Jy/LpN+hmbt1j+nVr07zvztv3zX1/7KARNAq3l7gVY87z+orMoCEGTuP66JIl1XhJ8/+CSN/FIHa79qPQEfw9OSPytiQkUzY8Q/Fg1yzLoboj9TNSNbSWDRP8nedoPTbvm/XiGebqoLBkDTxkT5N3TxP2Rt+WiCEfE/LbDo+YrAnD+FCUyBodwpP4SEYfasd1W/z4ssDFB8xD9pPH1dga5bv3btRmlhaso/Yhw681bt9b+7ssy+Okb8PzHp1pqwq+Q/7PFbRw2n5T//drti2S6mP1wnb8daMmo/nIR8IK99w790pUhpbnKQP1jOSt9iCs8/MJwrtA7Kor+nWPL1xl7wP352ZiHJk/o/jSY5fs3t7z8Fkx5y+TvvP0vjFViJuL8/3PK6C8yXrb8qQ841JrjLv9AFAqGh7M+/KD5eAdz3zz886As1uf3RPya52j4jBPE/fTtVVjKs8z99tC2mtz7UPzxygtZEG9Q/GrW8SGI6pj9hwATKgKmAP+EuDgSEOK0/ZxvYEUacsr8IT5VogEjAvwg+ZjUc1sY/MgA6JmRE5j9+dmYhyZP6P+dxiUooq9Q/FHqVsYz40z+Aqhs5pvyhP1DKe9ATuIA/YZ/peg1Kpz//0EZ779ezv1eR2+uKq7S/rRm48ufnxD8w9jtECj7jP307VVYyrPM/hKCyY6Zj+b/Lsr+Lq0/+PwMaNoy3RQRAooqyegPJ/T850RUxEnDivxLQsJSXQqO/nuyJ53WO0T+Arvcj+GmgvyYIhvmUZwHA7NMKgyWrA0CAwp9blW/Ev0WL2YPGlpw/0JEQbWH54z+a+alUo+rCP9nHVGkqHgHA11a5FbaCA0DgE/vc6bO/v9q6+ULo9KQ/oLH9m1TZ8z/FSC48ljUOwGTZA/p5oSDAKCsfISFwB0AnlLsPBvbNPxwVXBASmcG/mMwE4f9m/r9i0GMPHN8aQK9XuP9h9R7AKThfeKhZHUCwm/ukhar4P/DqfPO+DrM/mMwE4f9m/r9i0GMPHN8aQK9XuP9h9R7AKThfeKhZHUCwm/ukhar4P/DqfPO+DrM/FJipF0+J9T8dBe0BAXYVQBXG7tRlBQDAmPamCb7LBECCDHSgTf/Bv2Zz0gTOXsW/7MufyQmy7L+YEMuy5Y4jwMrDjknM6AnAwMCNB/JyDcACUX/jzb/pP6LG+d1vkta/7MufyQmy7L+YEMuy5Y4jwMrDjknM6AnAwMCNB/JyDcACUX/jzb/pP6LG+d1vkta/gOrs/GOn3T8tE5P+TW0GQMcp0PC4JvU/DHFjB5he+D8yYYKEOzXjPyQW2fknadE/Sji7wyGs3j913WeQyXkGQKBAQ0yh/vQ/FYPw371I+D+kevEoT6bjP9MDgITdZ9E/HkFsQAam4z8JzfIjg4D5v06G5fddgQtApTSg4x0aDEAtT023wabjP97WscdiIuE/osH1tZ+g2D+0kN4Rxb7zv0wzOm9IvwpAD9JVbNboCkC+qTyPvC3hP8/HxvGESOM/AAAACQ1FQ8AAAABZKptDwAAAACoGZz3AAAAAWj9iQ8AAAAAqwfJCwAAAgODSKlrAAAAAypB8REAAAACFyvdCwAAAAKek9UNAAACAR4ccXEAAAABAQSoIwAAAANyNvR7AAAAAAD9zC8AAAABibW4iwAAAAFqJ4SLAAAAAniKcIcAAAABCr2oXQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLBU1cAYaUjAFDlHSUUpQu"
|
43 |
+
},
|
44 |
+
"_episode_num": 9906,
|
45 |
+
"use_sde": false,
|
46 |
+
"sde_sample_freq": -1,
|
47 |
+
"_current_progress_remaining": 0.010001000000000038,
|
48 |
+
"_stats_window_size": 100,
|
49 |
+
"ep_info_buffer": {
|
50 |
+
":type:": "<class 'collections.deque'>",
|
51 |
+
":serialized:": "gAWVNwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQL9otBIFvAKMAWyUTegDjAF0lEdA7joSNWuHOHV9lChoBkdAv8QMmnfl62gHTegDaAhHQO46x5nDiwV1fZQoaAZHQMAIsgCOmzloB03oA2gIR0DuOtpM7EHddX2UKGgGR0C/DvaUzKs/aAdNzANoCEdA7jsmAQ6IWXV9lChoBkdAv6V4ZZSvT2gHTegDaAhHQO47RkibDuV1fZQoaAZHQI7EnWYnfEZoB0uZaAhHQO47fEHyEtd1fZQoaAZHQLS2iUQCjlBoB02iAmgIR0DuQfgN4qwydX2UKGgGR0C/f1NGNJe3aAdN6ANoCEdA7kIOOhbno3V9lChoBkdAv+NEvIwM6WgHTegDaAhHQO5CsI9Pk7x1fZQoaAZHQL8rrmlqJuVoB03oA2gIR0DuQxcnAqNIdX2UKGgGR0C/p4Ag5imVaAdN6ANoCEdA7kQimT9sJ3V9lChoBkdApxMx8KG+K2gHTZoBaAhHQO5EWUIiTt91fZQoaAZHQLgru12JSBNoB039AmgIR0DuTzC2DQJHdX2UKGgGR0C/Xh0W2w3YaAdN6ANoCEdA7k96K814xHV9lChoBkdAjgyJzDGcWmgHS5JoCEdA7lAehsZYP3V9lChoBkdAhyrYIa99MWgHS35oCEdA7lBK9kauOnV9lChoBkdAvATyYtxuK2gHTYMDaAhHQO5Rju/tY0V1fZQoaAZHQL/Uly4FzMloB03oA2gIR0DuUaL4ubqhdX2UKGgGR0C8ufXXd0q6aAdNmQNoCEdA7lIECdjG1nV9lChoBkdAl2WrQkX1rmgHS9JoCEdA7lJEsVLzw3V9lChoBkdArQczb8FY+2gHTd8BaAhHQO5eM+pQ1rJ1fZQoaAZHQL9e7aH9FWpoB03oA2gIR0DuYHIbT+efdX2UKGgGR0C5HxaIacZtaAdNGANoCEdA7mEFKBVdX3V9lChoBkdAhOxjLr5ZbWgHS29oCEdA7mJfvOyE+XV9lChoBkdAvxC91+y7gGgHTegDaAhHQO5isgUzsQd1fZQoaAZHQL9Ae6uGKyhoB03oA2gIR0DuYtBrnkksdX2UKGgGR0CijEXYDklvaAdNPgFoCEdA7nEiu0TlDHV9lChoBkdAwAmHicXm/2gHTegDaAhHQO5zk/TmW+p1fZQoaAZHQLq62W2PT5RoB01TA2gIR0DudRt5JsfrdX2UKGgGR0CWbbyRjjJdaAdLzWgIR0DudYMn7YTTdX2UKGgGR0C/+G9y5qdpaAdN6ANoCEdA7nf8g/s3Q3V9lChoBkdAv75yEZiuuGgHTegDaAhHQO54PNPYWcl1fZQoaAZHQKRGBMLWqcVoB01eAWgIR0DueHyi8nNQdX2UKGgGR0CINWLVnVXnaAdLfWgIR0DueRPFz+3pdX2UKGgGR0C+7s5Zr56/aAdN6ANoCEdA7oN6GLtNSXV9lChoBkdAswT0s6JZXGgHTWQCaAhHQO6GmzCm/Fl1fZQoaAZHQLKnqRDTjNpoB01fAmgIR0Duh2JMaCL/dX2UKGgGR0C/r9OWjXWfaAdN6ANoCEdA7oea1Tzd13V9lChoBkdAv7L3c580DWgHTegDaAhHQO6KiP6KtPp1fZQoaAZHQL/n8oR7JGRoB03oA2gIR0Duleek0rLAdX2UKGgGR0C1xM1jurp8aAdNswJoCEdA7pa+6ZhKDnV9lChoBkdAlag8L4N7SmgHS8doCEdA7pf6UdRzinV9lChoBkdAwAS6vRJEpmgHTegDaAhHQO6ZWA/xDst1fZQoaAZHQL+iSAnDziFoB03oA2gIR0DumyJ8XvYwdX2UKGgGR0DAAJop4KQaaAdN6ANoCEdA7p9hEw35vnV9lChoBkdAs8Fk77sOXmgHTXsCaAhHQO6rbzJyQxN1fZQoaAZHQLha2z5oGpxoB00KA2gIR0Duq+/AIIGAdX2UKGgGR0C/9pS8vmHQaAdN6ANoCEdA7q1Tq0dBB3V9lChoBkdAv+H7iyY5UGgHTegDaAhHQO6xOoTmGM51fZQoaAZHQL+J/4m1IAhoB03oA2gIR0DutPnFkQPJdX2UKGgGR0C/YKA2Ifr9aAdN6ANoCEdA7sG8YPXkHXV9lChoBkdAv00EMNMGo2gHTegDaAhHQO7CQM7CBPN1fZQoaAZHQL/U+6zE74loB03oA2gIR0Duw6+GTs6adX2UKGgGR0C0y0eenQ6ZaAdNpgJoCEdA7sPILEk0JnV9lChoBkdAv7+NXjlxO2gHTegDaAhHQO7K+y/0ulJ1fZQoaAZHQLnFR1VHWjJoB002A2gIR0Duy3KP9UCJdX2UKGgGR0CKIiVkc0cfaAdLimgIR0Du1SCbKifydX2UKGgGR0C/Oue1WsBAaAdN6ANoCEdA7tXby/TLGXV9lChoBkdAv4NQFV1fV2gHTegDaAhHQO7Wze2qkuZ1fZQoaAZHQL+sM9lmOENoB03oA2gIR0Du1t5nBciXdX2UKGgGR0CxOK6slsxgaAdNOgJoCEdA7tiREkB0ZHV9lChoBkdAq8waqZML4WgHTcsBaAhHQO7ZtGkP+XJ1fZQoaAZHQLGiX7lq8DloB01DAmgIR0Du27dOs1badX2UKGgGR0CtIf3g1m8NaAdN3gFoCEdA7tyI0tqYZ3V9lChoBkdAt45h3HJcPmgHTQIDaAhHQO7lSVSOzY51fZQoaAZHQL93E2ki2UloB03oA2gIR0Du5bAEug6EdX2UKGgGR0C/yOwEIPbxaAdN6ANoCEdA7uqA59Vmz3V9lChoBkdAv3e5/mT1TWgHTegDaAhHQO7spCgM+eR1fZQoaAZHQL+tjdKujh1oB03oA2gIR0Du7ZC+nIhhdX2UKGgGR0C/mUSauwHJaAdN6ANoCEdA7vd9llK9PHV9lChoBkdAv3sxfUnXumgHTegDaAhHQO74B45vLox1fZQoaAZHQL3IOZi/fwZoB027A2gIR0Du/h0jrzGxdX2UKGgGR0C7S5wyVObiaAdNdANoCEdA7wAjhxYJV3V9lChoBkdAwAFGhGH58GgHTegDaAhHQO8AOqjzqbB1fZQoaAZHQLnErmVZ9uxoB00+A2gIR0DvAE/lsguAdX2UKGgGR0B9ikdMj/uLaAdLV2gIR0DvAM1cY64ldX2UKGgGR0C+SQ6qOtGNaAdN6ANoCEdA7wftygf2b3V9lChoBkdAvd85qi48U2gHTdADaAhHQO8K9atxMnJ1fZQoaAZHQL9YDe9Ba9toB03oA2gIR0DvDMoeXAuadX2UKGgGR0C/kVm4RVZLaAdN6ANoCEdA7w0xMl1KXnV9lChoBkdAv4lE/bCaZ2gHTegDaAhHQO8OJwz1sch1fZQoaAZHQK7GbhZQpF1oB03zAWgIR0DvF1cwcHW0dX2UKGgGR0C/iZyGrS3LaAdN6ANoCEdA7xe7NKRMe3V9lChoBkdAtgRzSw4bTGgHTcgCaAhHQO8f1nK+zt11fZQoaAZHQLjV33bEgntoB004A2gIR0DvH955C4SZdX2UKGgGR0C/4zapxWDIaAdN6ANoCEdA7yCv9XLeRHV9lChoBkdAv1x2MPz4DmgHTegDaAhHQO8h0hAhStN1fZQoaAZHQL+6VSbpeNVoB03oA2gIR0DvKjALofSydX2UKGgGR0CxRoUiMYMwaAdNMwJoCEdA7yvJYwAU+XV9lChoBkdAgfkUyHmA9WgHS2NoCEdA7yx0NSQ5m3V9lChoBkdAv8+hYLb5/WgHTegDaAhHQO8uorqY7aJ1fZQoaAZHQL+M6mO2iL5oB03oA2gIR0DvL3NWz4UOdX2UKGgGR0C/E4I+r2g4aAdN6ANoCEdA7y+/sCDEnHV9lChoBkdAv2HjVmSQo2gHTegDaAhHQO87vgrc0tR1fZQoaAZHQJD7hCu2ZzBoB0ulaAhHQO897IUahpR1fZQoaAZHQL/XcAaef7JoB03oA2gIR0DvQAkqWkaddX2UKGgGR0CaNnYlY2bYaAdL9mgIR0DvQO4jkdWAdX2UKGgGR0C/hSu8wpOOaAdN6ANoCEdA70SAuP3i73V9lChoBkdAv5Rku9OARWgHTegDaAhHQO9Fe+T5ftx1fZQoaAZHQL9cEovBacJoB03oA2gIR0DvRewWCVbBdWUu"
|
52 |
+
},
|
53 |
+
"ep_success_buffer": {
|
54 |
+
":type:": "<class 'collections.deque'>",
|
55 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
56 |
+
},
|
57 |
+
"_n_updates": 989979,
|
58 |
+
"buffer_size": 1000000,
|
59 |
+
"batch_size": 256,
|
60 |
+
"learning_starts": 100,
|
61 |
+
"tau": 0.005,
|
62 |
+
"gamma": 0.99,
|
63 |
+
"gradient_steps": 1,
|
64 |
+
"optimize_memory_usage": false,
|
65 |
+
"replay_buffer_class": {
|
66 |
+
":type:": "<class 'abc.ABCMeta'>",
|
67 |
+
":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
|
68 |
+
"__module__": "stable_baselines3.common.buffers",
|
69 |
+
"__annotations__": "{'observations': <class 'numpy.ndarray'>, 'next_observations': <class 'numpy.ndarray'>, 'actions': <class 'numpy.ndarray'>, 'rewards': <class 'numpy.ndarray'>, 'dones': <class 'numpy.ndarray'>, 'timeouts': <class 'numpy.ndarray'>}",
|
70 |
+
"__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
|
71 |
+
"__init__": "<function ReplayBuffer.__init__ at 0x7faa71650d60>",
|
72 |
+
"add": "<function ReplayBuffer.add at 0x7faa71650ea0>",
|
73 |
+
"sample": "<function ReplayBuffer.sample at 0x7faa71650f40>",
|
74 |
+
"_get_samples": "<function ReplayBuffer._get_samples at 0x7faa71650fe0>",
|
75 |
+
"_maybe_cast_dtype": "<staticmethod(<function ReplayBuffer._maybe_cast_dtype at 0x7faa71651080>)>",
|
76 |
+
"__abstractmethods__": "frozenset()",
|
77 |
+
"_abc_impl": "<_abc._abc_data object at 0x7faa71c5f900>"
|
78 |
+
},
|
79 |
+
"replay_buffer_kwargs": {},
|
80 |
+
"train_freq": {
|
81 |
+
":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
|
82 |
+
":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
|
83 |
+
},
|
84 |
+
"use_sde_at_warmup": false,
|
85 |
+
"target_entropy": -17.0,
|
86 |
+
"ent_coef": "auto",
|
87 |
+
"target_update_interval": 1,
|
88 |
+
"top_quantiles_to_drop_per_net": 2,
|
89 |
+
"observation_space": {
|
90 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
91 |
+
":serialized:": "gAWV/BkAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRNXAGFlIwDbG93lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoluAKAAAAAAAAAAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/lGgLTVwBhZSMAUOUdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWXAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJNXAGFlGgWdJRSlIwEaGlnaJRoEyiW4AoAAAAAAAAAAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H+UaAtNXAGFlGgWdJRSlIwNYm91bmRlZF9hYm92ZZRoEyiWXAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaB1NXAGFlGgWdJRSlIwIbG93X3JlcHKUjAQtaW5mlIwJaGlnaF9yZXBylIwDaW5mlIwKX25wX3JhbmRvbZROdWIu",
|
92 |
+
"dtype": "float64",
|
93 |
+
"_shape": [
|
94 |
+
348
|
95 |
+
],
|
96 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
97 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False]",
|
98 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf]",
|
99 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False]",
|
100 |
+
"low_repr": "-inf",
|
101 |
+
"high_repr": "inf",
|
102 |
+
"_np_random": null
|
103 |
+
},
|
104 |
+
"action_space": {
|
105 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
106 |
+
":serialized:": "gAWV7AIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLEYWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWRAAAAAAAAADNzMy+zczMvs3MzL7NzMy+zczMvs3MzL7NzMy+zczMvs3MzL7NzMy+zczMvs3MzL7NzMy+zczMvs3MzL7NzMy+zczMvpRoC0sRhZSMAUOUdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWEQAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksRhZRoFnSUUpSMBGhpZ2iUaBMolkQAAAAAAAAAzczMPs3MzD7NzMw+zczMPs3MzD7NzMw+zczMPs3MzD7NzMw+zczMPs3MzD7NzMw+zczMPs3MzD7NzMw+zczMPs3MzD6UaAtLEYWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYRAAAAAAAAAAEBAQEBAQEBAQEBAQEBAQEBlGgdSxGFlGgWdJRSlIwIbG93X3JlcHKUjAQtMC40lIwJaGlnaF9yZXBylIwDMC40lIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwQX19nZW5lcmF0b3JfY3RvcpSTlIwFUENHNjSUaDKMFF9fYml0X2dlbmVyYXRvcl9jdG9ylJOUhpRSlH2UKIwNYml0X2dlbmVyYXRvcpSMBVBDRzY0lIwFc3RhdGWUfZQoaD2KEONhlaa3XlgJLUWWWTS1oRqMA2luY5SKEKlzeES8M4FYghr3OtvajUF1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHVidWIu",
|
107 |
+
"dtype": "float32",
|
108 |
+
"_shape": [
|
109 |
+
17
|
110 |
+
],
|
111 |
+
"low": "[-0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4\n -0.4 -0.4 -0.4]",
|
112 |
+
"bounded_below": "[ True True True True True True True True True True True True\n True True True True True]",
|
113 |
+
"high": "[0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4]",
|
114 |
+
"bounded_above": "[ True True True True True True True True True True True True\n True True True True True]",
|
115 |
+
"low_repr": "-0.4",
|
116 |
+
"high_repr": "0.4",
|
117 |
+
"_np_random": "Generator(PCG64)"
|
118 |
+
},
|
119 |
+
"n_envs": 5,
|
120 |
+
"lr_schedule": {
|
121 |
+
":type:": "<class 'function'>",
|
122 |
+
":serialized:": "gAWVRgQAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLBUsTQyaVAZcAdAEAAAAAAAAAAAIAiQF8AKsBAAAAAAAAqwEAAAAAAABTAJROhZSMBWZsb2F0lIWUjBJwcm9ncmVzc19yZW1haW5pbmeUhZSMaC9ob21lL21hc3Rlci1hbmRyZWFzL2dlbl9kYXRhc2V0L3Rlc3RfZW52L2xpYi9weXRob24zLjEyL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwIPGxhbWJkYT6UjCFnZXRfc2NoZWR1bGVfZm4uPGxvY2Fscz4uPGxhbWJkYT6US2FDEPiAAKRlqU7QO03TLE7UJk+UQwCUjA52YWx1ZV9zY2hlZHVsZZSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGgvaG9tZS9tYXN0ZXItYW5kcmVhcy9nZW5fZGF0YXNldC90ZXN0X2Vudi9saWIvcHl0aG9uMy4xMi9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoI32UfZQoaBqMCDxsYW1iZGE+lIwMX19xdWFsbmFtZV9flIwhZ2V0X3NjaGVkdWxlX2ZuLjxsb2NhbHM+LjxsYW1iZGE+lIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoG4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlGgCKGgHKEsBSwBLAEsBSwFLE0MIlQGXAIkBUwCUaAkpjAFflIWUaA6MBGZ1bmOUjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlEuFQwj4gADYDxKICpRoEowDdmFslIWUKXSUUpRoF05OaB8pUpSFlHSUUpRoJWhBfZR9lChoGowEZnVuY5RoKYwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5RoK32UaC1OaC5OaC9oG2gwTmgxaDNHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMIWUUpSFlGhKXZRoTH2UdYaUhlIwLg=="
|
123 |
+
},
|
124 |
+
"batch_norm_stats": [],
|
125 |
+
"batch_norm_stats_target": []
|
126 |
+
}
|
humanoid-v5-TQC-medium/ent_coef_optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c9b939d89b7ef0c3625f9e16b12bb4319e6a1b8e664a22c91791a3ff915d0aca
|
3 |
+
size 1940
|
humanoid-v5-TQC-medium/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d54c93dd82d97cd931caf85fcba5b4722b9c86075e9c679576b6ba45b7823c66
|
3 |
+
size 3321462
|
humanoid-v5-TQC-medium/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d00cd2dfdc0bc65964a9e4a47a7fef250d8ae3a006e01fe50345842dd945d41e
|
3 |
+
size 1180
|
humanoid-v5-TQC-medium/system_info.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.125-1-MANJARO-x86_64-with-glibc2.40 # 1 SMP PREEMPT_DYNAMIC Fri Jan 17 15:04:03 UTC 2025
|
2 |
+
- Python: 3.12.8
|
3 |
+
- Stable-Baselines3: 2.4.1
|
4 |
+
- PyTorch: 2.5.1+cu124
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.26.4
|
7 |
+
- Cloudpickle: 3.1.0
|
8 |
+
- Gymnasium: 1.0.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:32fb95823b348dea0cb0ba4c612cffda0f22b50e3b053feadd5b9344112adcc4
|
3 |
+
size 1026428
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 8021.94777762, "std_reward": 912.1852202495186, "is_deterministic": true, "n_eval_episodes": 1000, "eval_datetime": "2025-02-10T21:35:17.326421"}
|