Model save
Browse files
README.md
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: other
|
3 |
+
base_model: nvidia/mit-b0
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
model-index:
|
7 |
+
- name: baseline_plantorgans_model
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# baseline_plantorgans_model
|
15 |
+
|
16 |
+
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on an unknown dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 0.5639
|
19 |
+
- Mean Iou: 0.1095
|
20 |
+
- Mean Accuracy: 0.1373
|
21 |
+
- Overall Accuracy: 0.1858
|
22 |
+
- Accuracy Void: nan
|
23 |
+
- Accuracy Fruit: 0.5208
|
24 |
+
- Accuracy Leaf: 0.0197
|
25 |
+
- Accuracy Flower: 0.0
|
26 |
+
- Accuracy Stem: 0.0087
|
27 |
+
- Iou Void: 0.0
|
28 |
+
- Iou Fruit: 0.5192
|
29 |
+
- Iou Leaf: 0.0197
|
30 |
+
- Iou Flower: 0.0
|
31 |
+
- Iou Stem: 0.0087
|
32 |
+
|
33 |
+
## Model description
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Intended uses & limitations
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Training and evaluation data
|
42 |
+
|
43 |
+
More information needed
|
44 |
+
|
45 |
+
## Training procedure
|
46 |
+
|
47 |
+
### Training hyperparameters
|
48 |
+
|
49 |
+
The following hyperparameters were used during training:
|
50 |
+
- learning_rate: 5e-05
|
51 |
+
- train_batch_size: 8
|
52 |
+
- eval_batch_size: 8
|
53 |
+
- seed: 42
|
54 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
55 |
+
- lr_scheduler_type: linear
|
56 |
+
- lr_scheduler_warmup_steps: 100
|
57 |
+
- num_epochs: 3.0
|
58 |
+
|
59 |
+
### Training results
|
60 |
+
|
61 |
+
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Void | Accuracy Fruit | Accuracy Leaf | Accuracy Flower | Accuracy Stem | Iou Void | Iou Fruit | Iou Leaf | Iou Flower | Iou Stem |
|
62 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------:|:--------------:|:-------------:|:---------------:|:-------------:|:--------:|:---------:|:--------:|:----------:|:--------:|
|
63 |
+
| 0.8673 | 1.0 | 719 | 0.4827 | 0.1301 | 0.1639 | 0.2227 | nan | 0.6188 | 0.0271 | 0.0 | 0.0098 | 0.0 | 0.6135 | 0.0271 | 0.0 | 0.0098 |
|
64 |
+
| 0.4457 | 2.0 | 1438 | 0.5555 | 0.1130 | 0.1416 | 0.1927 | nan | 0.5224 | 0.0305 | 0.0 | 0.0135 | 0.0 | 0.5209 | 0.0305 | 0.0 | 0.0135 |
|
65 |
+
| 0.3272 | 3.0 | 2157 | 0.5639 | 0.1095 | 0.1373 | 0.1858 | nan | 0.5208 | 0.0197 | 0.0 | 0.0087 | 0.0 | 0.5192 | 0.0197 | 0.0 | 0.0087 |
|
66 |
+
|
67 |
+
|
68 |
+
### Framework versions
|
69 |
+
|
70 |
+
- Transformers 4.38.0.dev0
|
71 |
+
- Pytorch 2.1.2+cu121
|
72 |
+
- Datasets 2.16.1
|
73 |
+
- Tokenizers 0.15.0
|