jpodivin commited on
Commit
460d823
1 Parent(s): 1b6cffb

Model save

Browse files
Files changed (1) hide show
  1. README.md +73 -0
README.md ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ base_model: nvidia/mit-b0
4
+ tags:
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: baseline_plantorgans_model
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # baseline_plantorgans_model
15
+
16
+ This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on an unknown dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 0.5639
19
+ - Mean Iou: 0.1095
20
+ - Mean Accuracy: 0.1373
21
+ - Overall Accuracy: 0.1858
22
+ - Accuracy Void: nan
23
+ - Accuracy Fruit: 0.5208
24
+ - Accuracy Leaf: 0.0197
25
+ - Accuracy Flower: 0.0
26
+ - Accuracy Stem: 0.0087
27
+ - Iou Void: 0.0
28
+ - Iou Fruit: 0.5192
29
+ - Iou Leaf: 0.0197
30
+ - Iou Flower: 0.0
31
+ - Iou Stem: 0.0087
32
+
33
+ ## Model description
34
+
35
+ More information needed
36
+
37
+ ## Intended uses & limitations
38
+
39
+ More information needed
40
+
41
+ ## Training and evaluation data
42
+
43
+ More information needed
44
+
45
+ ## Training procedure
46
+
47
+ ### Training hyperparameters
48
+
49
+ The following hyperparameters were used during training:
50
+ - learning_rate: 5e-05
51
+ - train_batch_size: 8
52
+ - eval_batch_size: 8
53
+ - seed: 42
54
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
55
+ - lr_scheduler_type: linear
56
+ - lr_scheduler_warmup_steps: 100
57
+ - num_epochs: 3.0
58
+
59
+ ### Training results
60
+
61
+ | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Void | Accuracy Fruit | Accuracy Leaf | Accuracy Flower | Accuracy Stem | Iou Void | Iou Fruit | Iou Leaf | Iou Flower | Iou Stem |
62
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------:|:--------------:|:-------------:|:---------------:|:-------------:|:--------:|:---------:|:--------:|:----------:|:--------:|
63
+ | 0.8673 | 1.0 | 719 | 0.4827 | 0.1301 | 0.1639 | 0.2227 | nan | 0.6188 | 0.0271 | 0.0 | 0.0098 | 0.0 | 0.6135 | 0.0271 | 0.0 | 0.0098 |
64
+ | 0.4457 | 2.0 | 1438 | 0.5555 | 0.1130 | 0.1416 | 0.1927 | nan | 0.5224 | 0.0305 | 0.0 | 0.0135 | 0.0 | 0.5209 | 0.0305 | 0.0 | 0.0135 |
65
+ | 0.3272 | 3.0 | 2157 | 0.5639 | 0.1095 | 0.1373 | 0.1858 | nan | 0.5208 | 0.0197 | 0.0 | 0.0087 | 0.0 | 0.5192 | 0.0197 | 0.0 | 0.0087 |
66
+
67
+
68
+ ### Framework versions
69
+
70
+ - Transformers 4.38.0.dev0
71
+ - Pytorch 2.1.2+cu121
72
+ - Datasets 2.16.1
73
+ - Tokenizers 0.15.0