--- license: other base_model: nvidia/mit-b0 tags: - image-segmentation - vision - generated_from_trainer model-index: - name: baseline_plantorgans_model results: [] --- # baseline_plantorgans_model This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the jpodivin/plantorgans dataset. It achieves the following results on the evaluation set: - Loss: 0.5639 - Mean Iou: 0.1095 - Mean Accuracy: 0.1373 - Overall Accuracy: 0.1858 - Accuracy Void: nan - Accuracy Fruit: 0.5208 - Accuracy Leaf: 0.0197 - Accuracy Flower: 0.0 - Accuracy Stem: 0.0087 - Iou Void: 0.0 - Iou Fruit: 0.5192 - Iou Leaf: 0.0197 - Iou Flower: 0.0 - Iou Stem: 0.0087 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Void | Accuracy Fruit | Accuracy Leaf | Accuracy Flower | Accuracy Stem | Iou Void | Iou Fruit | Iou Leaf | Iou Flower | Iou Stem | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------:|:--------------:|:-------------:|:---------------:|:-------------:|:--------:|:---------:|:--------:|:----------:|:--------:| | 0.8673 | 1.0 | 719 | 0.4827 | 0.1301 | 0.1639 | 0.2227 | nan | 0.6188 | 0.0271 | 0.0 | 0.0098 | 0.0 | 0.6135 | 0.0271 | 0.0 | 0.0098 | | 0.4457 | 2.0 | 1438 | 0.5555 | 0.1130 | 0.1416 | 0.1927 | nan | 0.5224 | 0.0305 | 0.0 | 0.0135 | 0.0 | 0.5209 | 0.0305 | 0.0 | 0.0135 | | 0.3272 | 3.0 | 2157 | 0.5639 | 0.1095 | 0.1373 | 0.1858 | nan | 0.5208 | 0.0197 | 0.0 | 0.0087 | 0.0 | 0.5192 | 0.0197 | 0.0 | 0.0087 | ### Framework versions - Transformers 4.38.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0