File size: 2,696 Bytes
66bbe17 f15b691 66bbe17 f15b691 98cacdf f15b691 75cdd39 f15b691 98cacdf f15b691 d9d6c62 f15b691 66bbe17 f15b691 fcce1ea f15b691 32e06be f15b691 2acf420 f15b691 2acf420 f15b691 2acf420 f15b691 2acf420 f15b691 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
---
language:
- el
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
- hf-asr-leaderboard
- automatic-speech-recognition
- greek
datasets:
- mozilla-foundation/common_voice_11_0
- google/fleurs
metrics:
- wer
model-index:
- name: whisper-sm-el-intlv-xs
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: mozilla-foundation/common_voice_11_0
type: mozilla-foundation/common_voice_11_0
config: el
split: test
metrics:
- name: Wer
type: wer
value: 20.068722139673106
---
# Whisper small (Greek) Trained on Interleaved Datasets
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on interleaved mozilla-foundation/common_voice_11_0 (el) and google/fleurs (el_gr) dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4741
- Wer: 20.0687
## Model description
The model was developed during the Whisper Fine-Tuning Event in December 2022.
More details on the model can be found [in the original paper](https://cdn.openai.com/papers/whisper.pdf)
## Intended uses & limitations
The model is fine-tuned for transcription in the Greek language.
## Training and evaluation data
This model was trained by interleaving the training and evaluation splits from two different datasets:
- mozilla-foundation/common_voice_11_0 (el)
- google/fleurs (el_gr)
## Training procedure
The python script used is a modified version of the script provided by Hugging Face and can be found [here](https://github.com/kamfonas/whisper-fine-tuning-event/blob/minor-mods-by-farsipal/run_speech_recognition_seq2seq_streaming.py)
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.0186 | 4.98 | 1000 | 0.3619 | 21.0067 |
| 0.0012 | 9.95 | 2000 | 0.4347 | 20.3009 |
| 0.0005 | 14.93 | 3000 | 0.4741 | 20.0687 |
| 0.0003 | 19.9 | 4000 | 0.4974 | 20.1152 |
| 0.0003 | 24.88 | 5000 | 0.5066 | 20.2266 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0
- Datasets 2.7.1.dev0
- Tokenizers 0.12.1
|