File size: 1,921 Bytes
e0fc475
 
 
 
 
 
 
 
 
 
 
5b04677
 
e0fc475
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-base-multilingual-cased-finetuned-ijelid
  results: []
widget:
- text: "Productnya bagus bgt guys, nek bales chat cepet tur pelayanane apik."
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bert-base-multilingual-cased-finetuned-ijelid

This model was trained from scratch on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5701
- Precision: 0.9255
- Recall: 0.9206
- F1: 0.9229
- Accuracy: 0.9449

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 256
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log        | 1.0   | 25   | 0.5654          | 0.9300    | 0.9143 | 0.9219 | 0.9443   |
| No log        | 2.0   | 50   | 0.5853          | 0.9272    | 0.9162 | 0.9214 | 0.9437   |
| No log        | 3.0   | 75   | 0.5760          | 0.9275    | 0.9199 | 0.9235 | 0.9445   |
| No log        | 4.0   | 100  | 0.5733          | 0.9254    | 0.9209 | 0.9230 | 0.9445   |
| No log        | 5.0   | 125  | 0.5701          | 0.9255    | 0.9206 | 0.9229 | 0.9449   |


### Framework versions

- Transformers 4.21.2
- Pytorch 1.12.1+cu102
- Datasets 2.5.1
- Tokenizers 0.12.1