--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-multilingual-cased-finetuned-ijelid results: [] widget: - text: "Productnya bagus bgt guys, nek bales chat cepet tur pelayanane apik." --- # bert-base-multilingual-cased-finetuned-ijelid This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5701 - Precision: 0.9255 - Recall: 0.9206 - F1: 0.9229 - Accuracy: 0.9449 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 256 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 25 | 0.5654 | 0.9300 | 0.9143 | 0.9219 | 0.9443 | | No log | 2.0 | 50 | 0.5853 | 0.9272 | 0.9162 | 0.9214 | 0.9437 | | No log | 3.0 | 75 | 0.5760 | 0.9275 | 0.9199 | 0.9235 | 0.9445 | | No log | 4.0 | 100 | 0.5733 | 0.9254 | 0.9209 | 0.9230 | 0.9445 | | No log | 5.0 | 125 | 0.5701 | 0.9255 | 0.9206 | 0.9229 | 0.9449 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu102 - Datasets 2.5.1 - Tokenizers 0.12.1