File size: 1,888 Bytes
ee80e95
 
 
 
 
 
 
 
 
 
 
7f5ed37
 
ee80e95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: indobertweet-finetuned-ijelid
  results: []
widget:
- text: "Productnya bagus bgt guys, nek bales chat cepet tur pelayanane apik."
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# indobertweet-finetuned-ijelid

This model was trained from scratch on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5301
- Precision: 0.9246
- Recall: 0.9344
- F1: 0.9293
- Accuracy: 0.9513

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 128
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log        | 1.0   | 49   | 0.5141          | 0.9216    | 0.9326 | 0.9268 | 0.9508   |
| No log        | 2.0   | 98   | 0.5187          | 0.9222    | 0.9356 | 0.9285 | 0.9512   |
| No log        | 3.0   | 147  | 0.5307          | 0.9256    | 0.9341 | 0.9296 | 0.9516   |
| No log        | 4.0   | 196  | 0.5307          | 0.9251    | 0.9343 | 0.9295 | 0.9512   |
| No log        | 5.0   | 245  | 0.5301          | 0.9246    | 0.9344 | 0.9293 | 0.9513   |


### Framework versions

- Transformers 4.21.2
- Pytorch 1.12.1+cu102
- Datasets 2.5.1
- Tokenizers 0.12.1