fats-fme commited on
Commit
f95c62e
1 Parent(s): 4911332

End of training

Browse files
Files changed (2) hide show
  1. README.md +165 -0
  2. adapter_model.bin +3 -0
README.md ADDED
@@ -0,0 +1,165 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ license: apache-2.0
4
+ base_model: TinyLlama/TinyLlama_v1.1
5
+ tags:
6
+ - axolotl
7
+ - generated_from_trainer
8
+ model-index:
9
+ - name: 60a877d8-a6ca-4bf5-84d8-0da0ec026edd
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
17
+ <details><summary>See axolotl config</summary>
18
+
19
+ axolotl version: `0.4.1`
20
+ ```yaml
21
+ adapter: lora
22
+ base_model: TinyLlama/TinyLlama_v1.1
23
+ bf16: auto
24
+ chat_template: llama3
25
+ dataset_prepared_path: null
26
+ datasets:
27
+ - data_files:
28
+ - a71f093e60988734_train_data.json
29
+ ds_type: json
30
+ format: custom
31
+ path: /workspace/input_data/a71f093e60988734_train_data.json
32
+ type:
33
+ field_instruction: instruction
34
+ field_output: output
35
+ format: '{instruction}'
36
+ no_input_format: '{instruction}'
37
+ system_format: '{system}'
38
+ system_prompt: ''
39
+ ddp_find_unused_parameters: false
40
+ distributed_type: ddp
41
+ early_stopping_patience: null
42
+ env:
43
+ CUDA_VISIBLE_DEVICES: 0,1
44
+ MASTER_ADDR: localhost
45
+ MASTER_PORT: '29500'
46
+ NCCL_DEBUG: INFO
47
+ NCCL_IB_DISABLE: '0'
48
+ NCCL_P2P_DISABLE: '0'
49
+ NCCL_P2P_LEVEL: NVL
50
+ PYTORCH_CUDA_ALLOC_CONF: max_split_size_mb:512, garbage_collection_threshold:0.8
51
+ WORLD_SIZE: '2'
52
+ eval_max_new_tokens: 128
53
+ eval_table_size: null
54
+ evals_per_epoch: 4
55
+ flash_attention: false
56
+ fp16: false
57
+ gradient_accumulation_steps: 8
58
+ gradient_checkpointing: true
59
+ group_by_length: true
60
+ hub_model_id: fats-fme/60a877d8-a6ca-4bf5-84d8-0da0ec026edd
61
+ hub_repo: null
62
+ hub_strategy: checkpoint
63
+ hub_token: null
64
+ learning_rate: 0.0002
65
+ load_in_4bit: false
66
+ load_in_8bit: true
67
+ logging_steps: 1
68
+ lora_alpha: 32
69
+ lora_dropout: 0.05
70
+ lora_fan_in_fan_out: null
71
+ lora_model_dir: null
72
+ lora_r: 16
73
+ lora_target_linear: true
74
+ lr_scheduler: cosine
75
+ max_memory_MB: 60000
76
+ max_steps: -1
77
+ micro_batch_size: 2
78
+ mlflow_experiment_name: /tmp/a71f093e60988734_train_data.json
79
+ model_type: AutoModelForCausalLM
80
+ num_devices: 2
81
+ num_epochs: 1
82
+ optimizer: adamw_torch
83
+ output_dir: miner_id_24
84
+ pad_to_sequence_len: true
85
+ resume_from_checkpoint: null
86
+ s2_attention: null
87
+ sample_packing: false
88
+ saves_per_epoch: 4
89
+ sequence_len: 2048
90
+ special_tokens:
91
+ pad_token: </s>
92
+ strict: false
93
+ tf32: true
94
+ tokenizer_type: AutoTokenizer
95
+ train_on_inputs: false
96
+ trust_remote_code: true
97
+ val_set_size: 0.05
98
+ wandb_entity: null
99
+ wandb_mode: online
100
+ wandb_name: 60a877d8-a6ca-4bf5-84d8-0da0ec026edd
101
+ wandb_project: Gradients-On-Demand
102
+ wandb_run: your_name
103
+ wandb_runid: 60a877d8-a6ca-4bf5-84d8-0da0ec026edd
104
+ warmup_steps: 50
105
+ world_size: 2
106
+ xformers_attention: true
107
+
108
+ ```
109
+
110
+ </details><br>
111
+
112
+ # 60a877d8-a6ca-4bf5-84d8-0da0ec026edd
113
+
114
+ This model is a fine-tuned version of [TinyLlama/TinyLlama_v1.1](https://huggingface.co/TinyLlama/TinyLlama_v1.1) on the None dataset.
115
+ It achieves the following results on the evaluation set:
116
+ - Loss: 2.0991
117
+
118
+ ## Model description
119
+
120
+ More information needed
121
+
122
+ ## Intended uses & limitations
123
+
124
+ More information needed
125
+
126
+ ## Training and evaluation data
127
+
128
+ More information needed
129
+
130
+ ## Training procedure
131
+
132
+ ### Training hyperparameters
133
+
134
+ The following hyperparameters were used during training:
135
+ - learning_rate: 0.0002
136
+ - train_batch_size: 2
137
+ - eval_batch_size: 2
138
+ - seed: 42
139
+ - distributed_type: multi-GPU
140
+ - num_devices: 2
141
+ - gradient_accumulation_steps: 8
142
+ - total_train_batch_size: 32
143
+ - total_eval_batch_size: 4
144
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
145
+ - lr_scheduler_type: cosine
146
+ - lr_scheduler_warmup_steps: 50
147
+ - num_epochs: 1
148
+
149
+ ### Training results
150
+
151
+ | Training Loss | Epoch | Step | Validation Loss |
152
+ |:-------------:|:------:|:----:|:---------------:|
153
+ | 1.1939 | 0.0007 | 1 | 2.1018 |
154
+ | 1.5684 | 0.2502 | 383 | 2.0980 |
155
+ | 1.8955 | 0.5004 | 766 | 2.0970 |
156
+ | 3.4791 | 0.7506 | 1149 | 2.0991 |
157
+
158
+
159
+ ### Framework versions
160
+
161
+ - PEFT 0.13.2
162
+ - Transformers 4.46.0
163
+ - Pytorch 2.5.0+cu124
164
+ - Datasets 3.0.1
165
+ - Tokenizers 0.20.1
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6f45fb54462879e832a25bfca578b1d812b1bf453551687d0eb7a594a5eaea31
3
+ size 50573530