Upload PPO LunarLander-v2 trained agent
Browse files- MountainCar-v0-Optuna.zip +3 -0
- MountainCar-v0-Optuna/_stable_baselines3_version +1 -0
- MountainCar-v0-Optuna/data +99 -0
- MountainCar-v0-Optuna/policy.optimizer.pth +3 -0
- MountainCar-v0-Optuna/policy.pth +3 -0
- MountainCar-v0-Optuna/pytorch_variables.pth +3 -0
- MountainCar-v0-Optuna/system_info.txt +9 -0
- README.md +37 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
MountainCar-v0-Optuna.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:846227ce8b6f2cd2fb839fd98488bcc71358b9347431a704699ff0a9b734fe7f
|
3 |
+
size 136800
|
MountainCar-v0-Optuna/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
MountainCar-v0-Optuna/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7b0586e736d0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b0586e73760>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b0586e737f0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b0586e73880>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7b0586e73910>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7b0586e739a0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7b0586e73a30>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b0586e73ac0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7b0586e73b50>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b0586e73be0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b0586e73c70>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7b0586e73d00>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7b0586e78180>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1708381305137956385,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWV9QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAAAAAAAAAF8o7L7Ky1Y7c94Yv/xLjTtMwOa+EdYtu9VB0b52MC+5ks/zvr/Q3LqT1fW+/aZlO7nx5b4GUEk7BIESv2/gnTvctey+/mdYPOgxAL9QO1i7hE0Ev6Q5HTx4EL2+2gQYuzYc6r6IQig77zXgvucHRbvHdLi+6e+Mu6Pr7r7gyqY8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwKGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwGkAAAAAAACMAWyUS8iMAXSUR0B5Kai35N48dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5KaZWq95AdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5KaPxQSBcdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5KaGwiaAndX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5L2/vfCQ+dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5L2S9ugpSdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5L2CXhOxjdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5L14dIXj3dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5L1vDP4VRdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5L1lxwQ18dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5L06o2n89dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5L0xcmjTKdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5L0nw5NoKdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5L0eOn2qUdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5L0VHnU2DdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5L0LsrupkdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5L0Cr92ovdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5Lz5KvmozdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5LzvmYBvKdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5LzmlqJuVdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5ghv3rUsndX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5ghDOTq0MdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5ggyoGY8ddX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5ggotthuwdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5ggfU4JeFdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5ggWgvlEJdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5gfreIl+mdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5gfiNsFdLdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5gfYh+vyLdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5gfO/tY0VdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5gfF5v99/dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5ge8dxQzldX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5gezdDYywdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5gep84PwvdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5gegZjx0/dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5geXY150KdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5h5ImPYFrdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5h4b1h9b5dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5h4LNOdoWdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5h4BS1maqdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5h336AOJ+dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5h3upjtojdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5h3DLr5ZbdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5h251/2CedX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5h2wLVnVYdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5h2mpEQXidX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5h2dkJ8fFdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5h2UILPUsdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5h2LHdXT3dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5h2BoVVPvdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5h14FA3UAdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5h1vFWGRFdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5jPZWaMJhdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5jOtA9mpVdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5jOcbzbvgdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5jOShakhzdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5jOJGe+VUdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5jN/0/W1/dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5jNUYKpkxdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5jNLEk0JodX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5jNBZ6lchdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5jM33pOerdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5jMuxrzoVdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5jMleF+NMdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5jMcfeUILdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5jMTAWSEEdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5jMJb+tKadX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5jMAcT8HfdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5kpdzGPxQdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5koxEfDDTdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5kogwGnn/dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5koW2w3YMdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5koNe+mFbdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5koEOiFj/dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5knYxtYSydX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5knPdEb5udX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5knFxXGOudX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5km8QI2OydX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5kmzLOiWWdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5kmpvP1L8dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5kmguh9LIdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5kmXOW0JGdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5kmNrCWNWdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5kmEqUeMidX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5mBd2Pkq+dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5mAxHoX9BdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5mAgeRxLkdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5mAWi1y/9dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5mANI9TxYdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5mAD3dsSCdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5l/YZl4C7dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5l/PGACnxdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5l/FrEcbSdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5l+8SPEKmdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5l+zOX3QEdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5l+pxWDHwdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5l+gxrSE2dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5l+XRgJC0dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5l+NtIkJKdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5l+EtdzGQdWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 248,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVpAEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAgAAAAAAAAABAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksChZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWAgAAAAAAAAABAZRoFUsChZRoGXSUUpSMBl9zaGFwZZRLAoWUjANsb3eUaBEolggAAAAAAAAAmpmZvylcj72UaAtLAoWUaBl0lFKUjARoaWdolGgRKJYIAAAAAAAAAJqZGT8pXI89lGgLSwKFlGgZdJRSlIwIbG93X3JlcHKUjA1bLTEuMiAgLTAuMDddlIwJaGlnaF9yZXBylIwLWzAuNiAgMC4wN12UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True]",
|
60 |
+
"bounded_above": "[ True True]",
|
61 |
+
"_shape": [
|
62 |
+
2
|
63 |
+
],
|
64 |
+
"low": "[-1.2 -0.07]",
|
65 |
+
"high": "[0.6 0.07]",
|
66 |
+
"low_repr": "[-1.2 -0.07]",
|
67 |
+
"high_repr": "[0.6 0.07]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAwAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "3",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
MountainCar-v0-Optuna/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:daa4db6e0392973ad6eba0c45083aca2c19d3609bdb5c8e723064e22aad195f6
|
3 |
+
size 81706
|
MountainCar-v0-Optuna/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9e2638bd480d7112c5c8449364bf6031c0d6c43ee85e1967872cea533db32e13
|
3 |
+
size 40434
|
MountainCar-v0-Optuna/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
MountainCar-v0-Optuna/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.1.0+cu121
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.25.2
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- MountainCar-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: MountainCar-v0
|
16 |
+
type: MountainCar-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -200.00 +/- 0.00
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **MountainCar-v0**
|
25 |
+
This is a trained model of a **PPO** agent playing **MountainCar-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7b0586e736d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b0586e73760>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b0586e737f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b0586e73880>", "_build": "<function ActorCriticPolicy._build at 0x7b0586e73910>", "forward": "<function ActorCriticPolicy.forward at 0x7b0586e739a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b0586e73a30>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b0586e73ac0>", "_predict": "<function ActorCriticPolicy._predict at 0x7b0586e73b50>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b0586e73be0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b0586e73c70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b0586e73d00>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b0586e78180>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1708381305137956385, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWV9QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAAAAAAAAAF8o7L7Ky1Y7c94Yv/xLjTtMwOa+EdYtu9VB0b52MC+5ks/zvr/Q3LqT1fW+/aZlO7nx5b4GUEk7BIESv2/gnTvctey+/mdYPOgxAL9QO1i7hE0Ev6Q5HTx4EL2+2gQYuzYc6r6IQig77zXgvucHRbvHdLi+6e+Mu6Pr7r7gyqY8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwKGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwGkAAAAAAACMAWyUS8iMAXSUR0B5Kai35N48dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5KaZWq95AdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5KaPxQSBcdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5KaGwiaAndX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5L2/vfCQ+dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5L2S9ugpSdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5L2CXhOxjdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5L14dIXj3dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5L1vDP4VRdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5L1lxwQ18dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5L06o2n89dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5L0xcmjTKdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5L0nw5NoKdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5L0eOn2qUdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5L0VHnU2DdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5L0LsrupkdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5L0Cr92ovdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5Lz5KvmozdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5LzvmYBvKdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5LzmlqJuVdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5ghv3rUsndX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5ghDOTq0MdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5ggyoGY8ddX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5ggotthuwdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5ggfU4JeFdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5ggWgvlEJdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5gfreIl+mdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5gfiNsFdLdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5gfYh+vyLdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5gfO/tY0VdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5gfF5v99/dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5ge8dxQzldX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5gezdDYywdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5gep84PwvdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5gegZjx0/dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5geXY150KdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5h5ImPYFrdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5h4b1h9b5dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5h4LNOdoWdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5h4BS1maqdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5h336AOJ+dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5h3upjtojdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5h3DLr5ZbdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5h251/2CedX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5h2wLVnVYdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5h2mpEQXidX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5h2dkJ8fFdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5h2UILPUsdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5h2LHdXT3dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5h2BoVVPvdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5h14FA3UAdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5h1vFWGRFdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5jPZWaMJhdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5jOtA9mpVdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5jOcbzbvgdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5jOShakhzdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5jOJGe+VUdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5jN/0/W1/dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5jNUYKpkxdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5jNLEk0JodX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5jNBZ6lchdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5jM33pOerdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5jMuxrzoVdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5jMleF+NMdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5jMcfeUILdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5jMTAWSEEdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5jMJb+tKadX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5jMAcT8HfdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5kpdzGPxQdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5koxEfDDTdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5kogwGnn/dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5koW2w3YMdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5koNe+mFbdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5koEOiFj/dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5knYxtYSydX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5knPdEb5udX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5knFxXGOudX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5km8QI2OydX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5kmzLOiWWdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5kmpvP1L8dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5kmguh9LIdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5kmXOW0JGdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5kmNrCWNWdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5kmEqUeMidX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5mBd2Pkq+dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5mAxHoX9BdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5mAgeRxLkdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5mAWi1y/9dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5mANI9TxYdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5mAD3dsSCdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5l/YZl4C7dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5l/PGACnxdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5l/FrEcbSdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5l+8SPEKmdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5l+zOX3QEdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5l+pxWDHwdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5l+gxrSE2dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5l+XRgJC0dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5l+NtIkJKdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5l+EtdzGQdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVpAEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAgAAAAAAAAABAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksChZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWAgAAAAAAAAABAZRoFUsChZRoGXSUUpSMBl9zaGFwZZRLAoWUjANsb3eUaBEolggAAAAAAAAAmpmZvylcj72UaAtLAoWUaBl0lFKUjARoaWdolGgRKJYIAAAAAAAAAJqZGT8pXI89lGgLSwKFlGgZdJRSlIwIbG93X3JlcHKUjA1bLTEuMiAgLTAuMDddlIwJaGlnaF9yZXBylIwLWzAuNiAgMC4wN12UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True]", "bounded_above": "[ True True]", "_shape": [2], "low": "[-1.2 -0.07]", "high": "[0.6 0.07]", "low_repr": "[-1.2 -0.07]", "high_repr": "[0.6 0.07]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAwAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "3", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
replay.mp4
ADDED
Binary file (192 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -200.0, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-02-19T22:30:10.396807"}
|