fazito25 commited on
Commit
0163230
·
verified ·
1 Parent(s): d435f85

Upload PPO LunarLander-v2 trained agent

Browse files
MountainCar-v0-Optuna.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:846227ce8b6f2cd2fb839fd98488bcc71358b9347431a704699ff0a9b734fe7f
3
+ size 136800
MountainCar-v0-Optuna/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
MountainCar-v0-Optuna/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7b0586e736d0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b0586e73760>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b0586e737f0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b0586e73880>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7b0586e73910>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7b0586e739a0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b0586e73a30>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b0586e73ac0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7b0586e73b50>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b0586e73be0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b0586e73c70>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b0586e73d00>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7b0586e78180>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1708381305137956385,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWV9QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAAAAAAAAAF8o7L7Ky1Y7c94Yv/xLjTtMwOa+EdYtu9VB0b52MC+5ks/zvr/Q3LqT1fW+/aZlO7nx5b4GUEk7BIESv2/gnTvctey+/mdYPOgxAL9QO1i7hE0Ev6Q5HTx4EL2+2gQYuzYc6r6IQig77zXgvucHRbvHdLi+6e+Mu6Pr7r7gyqY8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwKGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwGkAAAAAAACMAWyUS8iMAXSUR0B5Kai35N48dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5KaZWq95AdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5KaPxQSBcdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5KaGwiaAndX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5L2/vfCQ+dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5L2S9ugpSdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5L2CXhOxjdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5L14dIXj3dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5L1vDP4VRdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5L1lxwQ18dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5L06o2n89dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5L0xcmjTKdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5L0nw5NoKdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5L0eOn2qUdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5L0VHnU2DdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5L0LsrupkdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5L0Cr92ovdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5Lz5KvmozdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5LzvmYBvKdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5LzmlqJuVdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5ghv3rUsndX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5ghDOTq0MdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5ggyoGY8ddX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5ggotthuwdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5ggfU4JeFdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5ggWgvlEJdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5gfreIl+mdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5gfiNsFdLdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5gfYh+vyLdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5gfO/tY0VdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5gfF5v99/dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5ge8dxQzldX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5gezdDYywdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5gep84PwvdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5gegZjx0/dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5geXY150KdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5h5ImPYFrdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5h4b1h9b5dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5h4LNOdoWdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5h4BS1maqdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5h336AOJ+dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5h3upjtojdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5h3DLr5ZbdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5h251/2CedX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5h2wLVnVYdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5h2mpEQXidX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5h2dkJ8fFdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5h2UILPUsdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5h2LHdXT3dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5h2BoVVPvdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5h14FA3UAdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5h1vFWGRFdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5jPZWaMJhdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5jOtA9mpVdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5jOcbzbvgdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5jOShakhzdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5jOJGe+VUdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5jN/0/W1/dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5jNUYKpkxdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5jNLEk0JodX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5jNBZ6lchdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5jM33pOerdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5jMuxrzoVdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5jMleF+NMdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5jMcfeUILdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5jMTAWSEEdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5jMJb+tKadX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5jMAcT8HfdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5kpdzGPxQdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5koxEfDDTdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5kogwGnn/dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5koW2w3YMdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5koNe+mFbdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5koEOiFj/dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5knYxtYSydX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5knPdEb5udX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5knFxXGOudX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5km8QI2OydX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5kmzLOiWWdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5kmpvP1L8dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5kmguh9LIdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5kmXOW0JGdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5kmNrCWNWdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5kmEqUeMidX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5mBd2Pkq+dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5mAxHoX9BdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5mAgeRxLkdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5mAWi1y/9dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5mANI9TxYdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5mAD3dsSCdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5l/YZl4C7dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5l/PGACnxdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5l/FrEcbSdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5l+8SPEKmdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5l+zOX3QEdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5l+pxWDHwdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5l+gxrSE2dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5l+XRgJC0dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5l+NtIkJKdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5l+EtdzGQdWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 248,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVpAEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAgAAAAAAAAABAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksChZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWAgAAAAAAAAABAZRoFUsChZRoGXSUUpSMBl9zaGFwZZRLAoWUjANsb3eUaBEolggAAAAAAAAAmpmZvylcj72UaAtLAoWUaBl0lFKUjARoaWdolGgRKJYIAAAAAAAAAJqZGT8pXI89lGgLSwKFlGgZdJRSlIwIbG93X3JlcHKUjA1bLTEuMiAgLTAuMDddlIwJaGlnaF9yZXBylIwLWzAuNiAgMC4wN12UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True]",
60
+ "bounded_above": "[ True True]",
61
+ "_shape": [
62
+ 2
63
+ ],
64
+ "low": "[-1.2 -0.07]",
65
+ "high": "[0.6 0.07]",
66
+ "low_repr": "[-1.2 -0.07]",
67
+ "high_repr": "[0.6 0.07]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAwAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "3",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
MountainCar-v0-Optuna/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:daa4db6e0392973ad6eba0c45083aca2c19d3609bdb5c8e723064e22aad195f6
3
+ size 81706
MountainCar-v0-Optuna/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e2638bd480d7112c5c8449364bf6031c0d6c43ee85e1967872cea533db32e13
3
+ size 40434
MountainCar-v0-Optuna/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
MountainCar-v0-Optuna/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.1.0+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.25.2
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - MountainCar-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: MountainCar-v0
16
+ type: MountainCar-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -200.00 +/- 0.00
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **MountainCar-v0**
25
+ This is a trained model of a **PPO** agent playing **MountainCar-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7b0586e736d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b0586e73760>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b0586e737f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b0586e73880>", "_build": "<function ActorCriticPolicy._build at 0x7b0586e73910>", "forward": "<function ActorCriticPolicy.forward at 0x7b0586e739a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b0586e73a30>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b0586e73ac0>", "_predict": "<function ActorCriticPolicy._predict at 0x7b0586e73b50>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b0586e73be0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b0586e73c70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b0586e73d00>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b0586e78180>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1708381305137956385, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWV9QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAAAAAAAAAF8o7L7Ky1Y7c94Yv/xLjTtMwOa+EdYtu9VB0b52MC+5ks/zvr/Q3LqT1fW+/aZlO7nx5b4GUEk7BIESv2/gnTvctey+/mdYPOgxAL9QO1i7hE0Ev6Q5HTx4EL2+2gQYuzYc6r6IQig77zXgvucHRbvHdLi+6e+Mu6Pr7r7gyqY8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwKGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwGkAAAAAAACMAWyUS8iMAXSUR0B5Kai35N48dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5KaZWq95AdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5KaPxQSBcdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5KaGwiaAndX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5L2/vfCQ+dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5L2S9ugpSdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5L2CXhOxjdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5L14dIXj3dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5L1vDP4VRdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5L1lxwQ18dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5L06o2n89dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5L0xcmjTKdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5L0nw5NoKdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5L0eOn2qUdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5L0VHnU2DdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5L0LsrupkdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5L0Cr92ovdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5Lz5KvmozdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5LzvmYBvKdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5LzmlqJuVdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5ghv3rUsndX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5ghDOTq0MdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5ggyoGY8ddX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5ggotthuwdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5ggfU4JeFdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5ggWgvlEJdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5gfreIl+mdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5gfiNsFdLdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5gfYh+vyLdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5gfO/tY0VdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5gfF5v99/dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5ge8dxQzldX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5gezdDYywdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5gep84PwvdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5gegZjx0/dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5geXY150KdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5h5ImPYFrdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5h4b1h9b5dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5h4LNOdoWdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5h4BS1maqdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5h336AOJ+dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5h3upjtojdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5h3DLr5ZbdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5h251/2CedX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5h2wLVnVYdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5h2mpEQXidX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5h2dkJ8fFdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5h2UILPUsdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5h2LHdXT3dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5h2BoVVPvdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5h14FA3UAdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5h1vFWGRFdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5jPZWaMJhdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5jOtA9mpVdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5jOcbzbvgdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5jOShakhzdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5jOJGe+VUdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5jN/0/W1/dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5jNUYKpkxdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5jNLEk0JodX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5jNBZ6lchdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5jM33pOerdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5jMuxrzoVdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5jMleF+NMdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5jMcfeUILdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5jMTAWSEEdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5jMJb+tKadX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5jMAcT8HfdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5kpdzGPxQdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5koxEfDDTdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5kogwGnn/dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5koW2w3YMdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5koNe+mFbdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5koEOiFj/dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5knYxtYSydX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5knPdEb5udX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5knFxXGOudX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5km8QI2OydX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5kmzLOiWWdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5kmpvP1L8dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5kmguh9LIdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5kmXOW0JGdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5kmNrCWNWdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5kmEqUeMidX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5mBd2Pkq+dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5mAxHoX9BdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5mAgeRxLkdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5mAWi1y/9dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5mANI9TxYdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5mAD3dsSCdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5l/YZl4C7dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5l/PGACnxdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5l/FrEcbSdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5l+8SPEKmdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5l+zOX3QEdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5l+pxWDHwdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5l+gxrSE2dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5l+XRgJC0dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5l+NtIkJKdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0B5l+EtdzGQdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVpAEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAgAAAAAAAAABAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksChZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWAgAAAAAAAAABAZRoFUsChZRoGXSUUpSMBl9zaGFwZZRLAoWUjANsb3eUaBEolggAAAAAAAAAmpmZvylcj72UaAtLAoWUaBl0lFKUjARoaWdolGgRKJYIAAAAAAAAAJqZGT8pXI89lGgLSwKFlGgZdJRSlIwIbG93X3JlcHKUjA1bLTEuMiAgLTAuMDddlIwJaGlnaF9yZXBylIwLWzAuNiAgMC4wN12UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True]", "bounded_above": "[ True True]", "_shape": [2], "low": "[-1.2 -0.07]", "high": "[0.6 0.07]", "low_repr": "[-1.2 -0.07]", "high_repr": "[0.6 0.07]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAwAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "3", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
replay.mp4 ADDED
Binary file (192 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -200.0, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-02-19T22:30:10.396807"}