File size: 1,166 Bytes
ecf5c53 a52d94d ecf5c53 a52d94d ecf5c53 5497dbd 7830d0d 20814e1 7830d0d be24de0 5497dbd ecf5c53 a52d94d ecf5c53 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 |
---
language:
- en
datasets:
- pubmed
- chemical patent
- cooking recipe
---
## ProcBERT
ProcBERT is a pre-trained language model specifically for procedural text. It was pre-trained on a large-scale procedural corpus (PubMed articles/chemical patents/cooking recipes) containing over 12B tokens and shows great performance on downstream tasks. More details can be found in the following [paper](https://arxiv.org/abs/2109.04711):
```
@inproceedings{bai-etal-2021-pre,
title = "Pre-train or Annotate? Domain Adaptation with a Constrained Budget",
author = "Bai, Fan and
Ritter, Alan and
Xu, Wei",
booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2021",
address = "Online and Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
}
```
## Usage
```
from transformers import *
tokenizer = AutoTokenizer.from_pretrained("fbaigt/procbert")
model = AutoModelForTokenClassification.from_pretrained("fbaigt/procbert")
```
More usage details can be found [here](https://github.com/bflashcp3f/ProcBERT). |