fbaldassarri commited on
Commit
1e8bc80
·
verified ·
1 Parent(s): ddc7980

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +86 -3
README.md CHANGED
@@ -1,3 +1,86 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ tags:
5
+ - pytorch
6
+ - causal-lm
7
+ - pythia
8
+ - autoround
9
+ - intel
10
+ - intel-autoround
11
+ - awq
12
+ - autoawq
13
+ - woq
14
+ license: apache-2.0
15
+ model_name: Pythia 410m deduped
16
+ base_model: EleutherAI/pythia-410m-deduped
17
+ inference: false
18
+ model_creator: EleutherAI
19
+ datasets:
20
+ - EleutherAI/pile
21
+ pipeline_tag: text-generation
22
+ prompt_template: '{prompt}
23
+ '
24
+ quantized_by: fbaldassarri
25
+ ---
26
+
27
+
28
+
29
+ ## Model Information
30
+
31
+ Quantized version of [EleutherAI/pythia-410m-deduped](EleutherAI/pythia-410m-deduped) using torch.float32 for quantization tuning.
32
+ - 4 bits (INT4)
33
+ - group size = 128
34
+ - Symmetrical Quantization
35
+ - Method AutoAWQ
36
+
37
+ Quantization framework: [Intel AutoRound](https://github.com/intel/auto-round)
38
+
39
+ Note: this INT4 version of pythia-410m-deduped has been quantized to run inference through CPU.
40
+
41
+ ## Replication Recipe
42
+
43
+ ### Step 1 Install Requirements
44
+
45
+ I suggest to install requirements into a dedicated python-virtualenv or a conda enviroment.
46
+
47
+ ```
48
+ python -m pip install <package> --upgrade
49
+ ```
50
+
51
+ - accelerate==1.0.1
52
+ - auto_gptq==0.7.1
53
+ - neural_compressor==3.1
54
+ - torch==2.3.0+cpu
55
+ - torchaudio==2.5.0+cpu
56
+ - torchvision==0.18.0+cpu
57
+ - transformers==4.45.2
58
+
59
+ ### Step 2 Build Intel Autoround wheel from sources
60
+
61
+ ```
62
+ python -m pip install git+https://github.com/intel/auto-round.git
63
+ ```
64
+
65
+ ### Step 3 Script for Quantization
66
+
67
+ ```
68
+ from transformers import AutoModelForCausalLM, AutoTokenizer
69
+ model_name = "EleutherAI/pythia-410m-deduped"
70
+ model = AutoModelForCausalLM.from_pretrained(model_name)
71
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
72
+ from auto_round import AutoRound
73
+ bits, group_size, sym, device, amp = 4, 128, True, 'cpu', False
74
+ autoround = AutoRound(model, tokenizer, nsamples=128, iters=200, seqlen=512, batch_size=4, bits=bits, group_size=group_size, sym=sym, device=device, amp=amp)
75
+ autoround.quantize()
76
+ output_dir = "./AutoRound/EleutherAI_pythia-410m-deduped-autoawq-int4-gs128-sym"
77
+ autoround.save_quantized(output_dir, format='auto_awq', inplace=True)
78
+ ```
79
+
80
+ ## License
81
+
82
+ [Apache 2.0 License](https://choosealicense.com/licenses/apache-2.0/)
83
+
84
+ ## Disclaimer
85
+
86
+ This quantized model comes with no warrenty. It has been developed only for research purposes.