fbaldassarri commited on
Commit
1202c1a
·
verified ·
1 Parent(s): faf59d8

Initial Upload

Browse files
README.md CHANGED
@@ -1,3 +1,87 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ tags:
5
+ - pytorch
6
+ - causal-lm
7
+ - tinyllama
8
+ - autoround
9
+ - intel
10
+ - gptq
11
+ - woq
12
+ license: apache-2.0
13
+ model_name: TinyLlama 1.1B v1.1
14
+ base_model: TinyLlama/TinyLlama_v1.1
15
+ inference: false
16
+ model_creator: TinyLlama
17
+ datasets:
18
+ - cerebras/SlimPajama-627B
19
+ pipeline_tag: text-generation
20
+ prompt_template: '{prompt}
21
+ '
22
+ quantized_by: fbaldassarri
23
+ ---
24
+
25
+
26
+
27
+ ## Model Information
28
+
29
+ Quantized version of [TinyLlama 1.1B v1.1](https://huggingface.co/TinyLlama/TinyLlama_v1.1/) using torch.float32 for quantization tuning.
30
+ - 4 bits (INT4)
31
+ - group size = 128
32
+ - Symmetrical Quantization
33
+ - Method AutoRound (WOQ)
34
+
35
+ Fast and low memory, 2-3X speedup (slight accuracy drop at W4G128)
36
+
37
+ Quantization framework: [Intel AutoRound](https://github.com/intel/auto-round)
38
+
39
+ Note: this INT4 version of TinyLlama/TinyLlama_v1.1 has been quantized to run inference through CPU.
40
+
41
+ ## Replication Recipe
42
+
43
+ ### Step 1 Install Requirements
44
+
45
+ I suggest to install requirements into a dedicated python-virtualenv or a conda enviroment.
46
+
47
+ ```
48
+ python -m pip install <package> --upgrade
49
+ ```
50
+
51
+ - accelerate==1.0.1
52
+ - auto_gptq==0.7.1
53
+ - neural_compressor==3.1
54
+ - torch==2.3.0+cpu
55
+ - torchaudio==2.5.0+cpu
56
+ - torchvision==0.18.0+cpu
57
+ - transformers==4.45.2
58
+
59
+ ### Step 2 Build Intel Autoround wheel from sources
60
+
61
+ ```
62
+ python -m pip install git+https://github.com/intel/auto-round.git
63
+ ```
64
+
65
+ ### Step 3 Script for Quantization
66
+
67
+ ```
68
+ from transformers import AutoModelForCausalLM, AutoTokenizer
69
+ model_name = "TinyLlama/TinyLlama_v1.1"
70
+ model = AutoModelForCausalLM.from_pretrained(model_name)
71
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
72
+ from auto_round import AutoRound
73
+ bits, group_size, sym = 4, 128, True
74
+ autoround = AutoRound(model, tokenizer, nsamples=128, iters=200, seqlen=512, batch_size=4, bits=bits, group_size=group_size, sym=sym)
75
+ autoround.quantize()
76
+ output_dir = "./AutoRound/TinyLlama_TinyLlama_v1.1-autoround-int4-gs128-sym"
77
+ autoround.save_quantized(output_dir, format='auto_round', inplace=True)
78
+ ```
79
+
80
+ ## License
81
+
82
+ [Apache 2.0 License](https://choosealicense.com/licenses/apache-2.0/)
83
+
84
+ ## Disclaimer
85
+
86
+ This quantized model comes with no warrenty. It has been developed only for research purposes.
87
+
config.json ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "TinyLlama/TinyLlama_v1.1",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 1,
9
+ "eos_token_id": 2,
10
+ "head_dim": 64,
11
+ "hidden_act": "silu",
12
+ "hidden_size": 2048,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 5632,
15
+ "max_position_embeddings": 2048,
16
+ "mlp_bias": false,
17
+ "model_type": "llama",
18
+ "num_attention_heads": 32,
19
+ "num_hidden_layers": 22,
20
+ "num_key_value_heads": 4,
21
+ "pretraining_tp": 1,
22
+ "quantization_config": {
23
+ "amp": false,
24
+ "autoround_version": "0.4.0.dev",
25
+ "backend": "auto_round:gptq:exllamav2",
26
+ "bits": 4,
27
+ "data_type": "int",
28
+ "dataset": "NeelNanda/pile-10k",
29
+ "enable_minmax_tuning": true,
30
+ "enable_norm_bias_tuning": false,
31
+ "enable_quanted_input": true,
32
+ "gradient_accumulate_steps": 1,
33
+ "group_size": 128,
34
+ "iters": 200,
35
+ "low_gpu_mem_usage": false,
36
+ "lr": 0.005,
37
+ "minmax_lr": 0.005,
38
+ "nsamples": 128,
39
+ "quant_block_list": null,
40
+ "quant_method": "intel/auto-round",
41
+ "scale_dtype": "torch.float16",
42
+ "seqlen": 512,
43
+ "sym": true,
44
+ "train_bs": 4
45
+ },
46
+ "rms_norm_eps": 1e-05,
47
+ "rope_scaling": null,
48
+ "rope_theta": 10000.0,
49
+ "tie_word_embeddings": false,
50
+ "torch_dtype": "float32",
51
+ "transformers_version": "4.45.2",
52
+ "use_cache": true,
53
+ "vocab_size": 32000
54
+ }
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 1,
3
+ "eos_token_id": 2,
4
+ "max_length": 2048,
5
+ "pad_token_id": 0,
6
+ "transformers_version": "4.45.2"
7
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7364641eb0bc9769b3dd196ac6ed54606b08e9073bf4e1498ada7a0586e4bf9d
3
+ size 1028079184
quantization_config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bits": 4,
3
+ "group_size": 128,
4
+ "sym": true,
5
+ "data_type": "int",
6
+ "enable_quanted_input": true,
7
+ "enable_minmax_tuning": true,
8
+ "seqlen": 512,
9
+ "train_bs": 4,
10
+ "scale_dtype": "torch.float16",
11
+ "lr": 0.005,
12
+ "minmax_lr": 0.005,
13
+ "gradient_accumulate_steps": 1,
14
+ "iters": 200,
15
+ "amp": false,
16
+ "nsamples": 128,
17
+ "low_gpu_mem_usage": false,
18
+ "quant_block_list": null,
19
+ "enable_norm_bias_tuning": false,
20
+ "dataset": "NeelNanda/pile-10k",
21
+ "autoround_version": "0.4.0.dev",
22
+ "quant_method": "intel/auto-round",
23
+ "backend": "auto_round:gptq:exllamav2"
24
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "unk_token": {
17
+ "content": "<unk>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ }
23
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
tokenizer_config.json ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": null,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ }
30
+ },
31
+ "bos_token": "<s>",
32
+ "clean_up_tokenization_spaces": false,
33
+ "eos_token": "</s>",
34
+ "legacy": false,
35
+ "model_max_length": 1000000000000000019884624838656,
36
+ "pad_token": null,
37
+ "padding_side": "right",
38
+ "sp_model_kwargs": {},
39
+ "tokenizer_class": "LlamaTokenizer",
40
+ "unk_token": "<unk>",
41
+ "use_default_system_prompt": false
42
+ }