fbeghell commited on
Commit
c50d3a2
·
1 Parent(s): 1b5bfea

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 895.07 +/- 169.36
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da50ec4bf22dca6ff1c269758a19a328db8dc28d9f407e21df8eaa34ce12fb7b
3
+ size 129256
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3a9262f8b0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3a9262f940>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3a9262f9d0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3a9262fa60>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f3a9262faf0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f3a9262fb80>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f3a9262fc10>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3a9262fca0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f3a9262fd30>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3a9262fdc0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3a9262fe50>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3a9262fee0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f3a92630180>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1677255749674706505,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAANM/kL5aFHw/shuSvyDvE7+CpVM/ZnsBv6hVM75J0yG+LR24v92wUb+/Ewe9xWqHPSxAjL3cP6W/mo7BPhvMAUCdyGm/0hpHv/Z+UT4BLRw/aB2Ovzx8wz15YL29le3wP3OvQj+pERA/2XyqPottqj7c+fi++Wh+Px8jjr9UK32/PJuAPgiIsz4L8Ae/OZE+PljEIb+jRCy/K7vxvoU2NL2i0YS/QIjUviCoeT+nW4K9ToSGvyD3HD2hc6y9nODpvgTojb9ts6o9urcLvSzsOL9zr0I/VHLjv9l8qj6Lbao+StHsv44157+PiHM/WK4yv/5KNL+FQ5o9uye3v1Cta0BLSLs/9xTgPEbQA8C5Vk+9NoKGv27I7zxNcHk/LJ2vPJoCyj+V+KI9vFbfv8J/FD3Fz4y/THYQPe91Ur/7EEK9c69CP1Ry47/ZfKo+i22qPswdS75a0oA/PPOHv8UHSz9DUfc+ZawAPwIoxz5lyEE9V8CEv+Ja3D7OKEi+SDMwPzDqor4sTTU/J8tSvrEQZr6qOZO/x6DHv3A5nD1yA6m/LxR4v/fexj7UlOy+sSrjvQdQqL+pERA/2XyqPottqj6UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABVBUA2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAy/hOPQAAAACyXf+/AAAAAHHFar0AAAAAG1HnPwAAAAB87+o9AAAAADPd3D8AAAAAjwP+vQAAAACXsfC/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIlsbtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgGNU8L0AAAAAafL3vwAAAACHBEi9AAAAALqY/T8AAAAAF2fWvQAAAABHFO0/AAAAABwKhD0AAAAAJYb7vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABL5C7YAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBURAk+AAAAAGks5r8AAAAAVJcJPgAAAAANMOw/AAAAAHgbgzoAAAAA2grdPwAAAAB47co9AAAAAB0E8r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADVetK0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA6oCaPQAAAACjTO2/AAAAAPBQzT0AAAAAaIrdPwAAAABnFyi9AAAAACuy/T8AAAAAK9SlOwAAAADS4fa/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIgKre0ojOeMAWyUTegDjAF0lEdAq66sGC7K73V9lChoBkdAi091yeZof2gHTegDaAhHQKuwxYjB2wF1fZQoaAZHQIubKteUpuxoB03oA2gIR0CruRp+DvmYdX2UKGgGR0CNYZBFd9lVaAdN6ANoCEdAq75nf2saKnV9lChoBkdAjUn8Oby6MGgHTegDaAhHQKu/f0A93bF1fZQoaAZHQI9sA7YChexoB03oA2gIR0CrwXN5D7ZWdX2UKGgGR0CM56Hi3ocJaAdN6ANoCEdAq8bjH+6y0XV9lChoBkdAjT6WjwhGIGgHTegDaAhHQKvKme2/i5x1fZQoaAZHQJDEJ9F4LThoB03oA2gIR0Cry8KveP7vdX2UKGgGR0CQmP/7iyY5aAdN6ANoCEdAq83O9YfW+XV9lChoBkdAipL93jdYXGgHTegDaAhHQKvU9W8RL9N1fZQoaAZHQI6MoPbwjMVoB03oA2gIR0Cr2tW3rleXdX2UKGgGR0CKHB2saKk3aAdN6ANoCEdAq9vw2Ifr8nV9lChoBkdAjzjhH9WIXWgHTegDaAhHQKvd57YTTOR1fZQoaAZHQIr2jjPv8ZVoB03oA2gIR0Cr46DnFHawdX2UKGgGR0CNtfo3aSLZaAdN6ANoCEdAq+dgdZJTVHV9lChoBkdAi1ZDFQ2uPmgHTegDaAhHQKvof0163RZ1fZQoaAZHQI62Mp1A7gdoB03oA2gIR0Cr6p7Gecx1dX2UKGgGR0CMe33np0OmaAdN6ANoCEdAq/E35HmRvHV9lChoBkdAjAadKNAC4mgHTegDaAhHQKv3QZXuE251fZQoaAZHQI2YEb3oLXtoB03oA2gIR0Cr+QD8DSw4dX2UKGgGR0CIvYgaFVT8aAdN6ANoCEdAq/sp5xBE8nV9lChoBkdAhlkUn5SFXmgHTegDaAhHQKwBB1DBuXN1fZQoaAZHQIp+DvCuU2VoB03oA2gIR0CsBLdsi0OWdX2UKGgGR0CKMr9tuUD/aAdN6ANoCEdArAXLqGDcunV9lChoBkdAi/YZaNdZ72gHTegDaAhHQKwHwvVVghN1fZQoaAZHQIwEMXpGFzxoB03oA2gIR0CsDd1fE4vOdX2UKGgGR0CM3Yx4Y77saAdN6ANoCEdArBQA3vQWvnV9lChoBkdAiVXmnO0LMWgHTegDaAhHQKwV1EMLF4t1fZQoaAZHQIqvOerdWQxoB03oA2gIR0CsGDg7PppwdX2UKGgGR0CMx18k2P1daAdN6ANoCEdArB4YLw4KhXV9lChoBkdAjSmA5imVJWgHTegDaAhHQKwhsu27Wd51fZQoaAZHQIyZ89SuQp5oB03oA2gIR0CsIsnKW9lFdX2UKGgGR0CK2zeCTUy6aAdN6ANoCEdArCTK8lHBlHV9lChoBkdAjBhfra/RFGgHTegDaAhHQKwqfEk0Jnh1fZQoaAZHQIivYbKifxtoB03oA2gIR0CsMDRTKkmAdX2UKGgGR0CL60xUNrj6aAdN6ANoCEdArDIH5rP+oHV9lChoBkdAhp3N/WlMy2gHTegDaAhHQKw1TkU9IPN1fZQoaAZHQIcFD/sE7nxoB03oA2gIR0CsO0pda+vhdX2UKGgGR0CE+oX668QJaAdN6ANoCEdArD7zQXyiEnV9lChoBkdAiG57pV0cO2gHTegDaAhHQKxACaBqbjN1fZQoaAZHQINstnscABFoB03oA2gIR0CsQhXPAwfydX2UKGgGR0CEyg+A3DNyaAdN6ANoCEdArEfrrE9+w3V9lChoBkdAir5VAzHjqGgHTegDaAhHQKxNQo/iYLN1fZQoaAZHQIpfPrIHTqloB03oA2gIR0CsTykpRXOodX2UKGgGR0COTiWOZLIxaAdN6ANoCEdArFKg0ygwoXV9lChoBkdAi4JlcY64lWgHTegDaAhHQKxYXGp++dt1fZQoaAZHQI5JzrJKaodoB03oA2gIR0CsW/wEyLyddX2UKGgGR0CQnrICU5dXaAdN6ANoCEdArF0RAv+OwXV9lChoBkdAjqkLEk0JnmgHTegDaAhHQKxfKiZfD1p1fZQoaAZHQI82fKdQO4JoB03oA2gIR0CsZOFm4AjqdX2UKGgGR0CPEaA3DNyHaAdN6ANoCEdArGmcJng5znV9lChoBkdAjU+lj/dZaGgHTegDaAhHQKxrgWHDaXd1fZQoaAZHQIz1Zo4+8oRoB03oA2gIR0Csbv+4TbnHdX2UKGgGR0CMibfl6qsEaAdN6ANoCEdArHXma+evp3V9lChoBkdAjJlrxy4nW2gHTegDaAhHQKx5oGJN0vJ1fZQoaAZHQIqUI6nzg/FoB03oA2gIR0Cserm+j/ModX2UKGgGR0CJcvBfKISEaAdN6ANoCEdArHy07QswtnV9lChoBkdAjkV0NKAavWgHTegDaAhHQKyCZNATqSp1fZQoaAZHQIuNbvoePq9oB03oA2gIR0CshqxgZ0jkdX2UKGgGR0CNl3lV94NaaAdN6ANoCEdArIh4EB8x9HV9lChoBkdAimrJBPbfxmgHTegDaAhHQKyL0sIVuaZ1fZQoaAZHQIvZ9sP8Q7NoB03oA2gIR0CsksIWxhUjdX2UKGgGR0CF9jmwJPZaaAdN6ANoCEdArJZoHeJpFnV9lChoBkdAiOm3okiUxGgHTegDaAhHQKyXf0h/y5J1fZQoaAZHQIR4ecWj459oB03oA2gIR0CsmXvnSv1UdX2UKGgGR0CHn+UL2HtXaAdN6ANoCEdArJ9WIbfgrHV9lChoBkdAhkfQpnYg72gHTegDaAhHQKyjhyhBZ6l1fZQoaAZHQIidiIJqqOtoB03oA2gIR0CspVNsnAqNdX2UKGgGR0CGUsXwb2lEaAdN6ANoCEdArKii0OVgQnV9lChoBkdAiLjz9jwx32gHTegDaAhHQKywhTfBN211fZQoaAZHQIcmWAd4mkZoB03oA2gIR0CstDGJN0vHdX2UKGgGR0CFmtykKu0UaAdN6ANoCEdArLVSt3fQ8nV9lChoBkdAh73HpKSPl2gHTegDaAhHQKy3WBJ7LMd1fZQoaAZHQFK56cy31BdoB0tYaAhHQKy4eTlDF611fZQoaAZHQIyKoKSgXdloB03oA2gIR0CsvTHlnyuqdX2UKGgGR0CPq/8WKuSwaAdN6ANoCEdArMDT5uZTh3V9lChoBkdAhSgNNi6QNmgHTegDaAhHQKzCVCx/ust1fZQoaAZHQIpsLrPdEb5oB03oA2gIR0Csx0K9oN/fdX2UKGgGR0CLA7CswL3LaAdN6ANoCEdArM1rofSx7nV9lChoBkdAjFhpg9eQdWgHTegDaAhHQKzRF6k69011fZQoaAZHQIpqYj8k2P1oB03oA2gIR0Cs0jNBfKISdX2UKGgGR0CM37E5QxetaAdN6ANoCEdArNVx2bG3nnV9lChoBkdAjPdPg3tKI2gHTegDaAhHQKzaRuSfUWl1fZQoaAZHQIxekjAzpHJoB03oA2gIR0Cs3gX6AOJ+dX2UKGgGR0CQKUXnQpnZaAdN6ANoCEdArN83/YJ3PnV9lChoBkdAg7RaCUX532gHTegDaAhHQKzkNIAfdRB1fZQoaAZHQIyPCfUWl/JoB03oA2gIR0Cs6tbdSEUTdX2UKGgGR0CQLuuoxYaHaAdN6ANoCEdArO6sLronr3V9lChoBkdAjTmJ4rz5GmgHTegDaAhHQKzv0dNnGsF1fZQoaAZHQI5YZCrtE5RoB03oA2gIR0Cs8xKJl8PXdX2UKGgGR0CN+tZU1hsqaAdN6ANoCEdArPewLy+YdHV9lChoBkdAi892eHzpYGgHTegDaAhHQKz7QWw/xDt1fZQoaAZHQJALqr2g399oB03oA2gIR0Cs/E+XRgJDdX2UKGgGR0CO6aLLpzLfaAdN6ANoCEdArQDC0MPSUnV9lChoBkdAiuoq2SdOI2gHTegDaAhHQK0H1k3CKrJ1fZQoaAZHQI78aySmqHZoB03oA2gIR0CtC5BZyMkydX2UKGgGR0CPYE3x4IKMaAdN6ANoCEdArQyrYRNAT3V9lChoBkdAjOm/foA4oGgHTegDaAhHQK0P2H2RJVd1fZQoaAZHQIvYORgZ0jloB03oA2gIR0CtFFeZXuE3dWUu"
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9412999f3a4889cc92026dc4b1c9770421835ecdca1a9596d9b1c7e58b35d8e7
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8a7e10dc8670d1830e6f3b2d6d5303f49de45824d43fb77ce3be765002fcbdcb
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3a9262f8b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3a9262f940>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3a9262f9d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3a9262fa60>", "_build": "<function ActorCriticPolicy._build at 0x7f3a9262faf0>", "forward": "<function ActorCriticPolicy.forward at 0x7f3a9262fb80>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f3a9262fc10>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3a9262fca0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f3a9262fd30>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3a9262fdc0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3a9262fe50>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3a9262fee0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f3a92630180>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677255749674706505, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAANM/kL5aFHw/shuSvyDvE7+CpVM/ZnsBv6hVM75J0yG+LR24v92wUb+/Ewe9xWqHPSxAjL3cP6W/mo7BPhvMAUCdyGm/0hpHv/Z+UT4BLRw/aB2Ovzx8wz15YL29le3wP3OvQj+pERA/2XyqPottqj7c+fi++Wh+Px8jjr9UK32/PJuAPgiIsz4L8Ae/OZE+PljEIb+jRCy/K7vxvoU2NL2i0YS/QIjUviCoeT+nW4K9ToSGvyD3HD2hc6y9nODpvgTojb9ts6o9urcLvSzsOL9zr0I/VHLjv9l8qj6Lbao+StHsv44157+PiHM/WK4yv/5KNL+FQ5o9uye3v1Cta0BLSLs/9xTgPEbQA8C5Vk+9NoKGv27I7zxNcHk/LJ2vPJoCyj+V+KI9vFbfv8J/FD3Fz4y/THYQPe91Ur/7EEK9c69CP1Ry47/ZfKo+i22qPswdS75a0oA/PPOHv8UHSz9DUfc+ZawAPwIoxz5lyEE9V8CEv+Ja3D7OKEi+SDMwPzDqor4sTTU/J8tSvrEQZr6qOZO/x6DHv3A5nD1yA6m/LxR4v/fexj7UlOy+sSrjvQdQqL+pERA/2XyqPottqj6UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABVBUA2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAy/hOPQAAAACyXf+/AAAAAHHFar0AAAAAG1HnPwAAAAB87+o9AAAAADPd3D8AAAAAjwP+vQAAAACXsfC/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIlsbtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgGNU8L0AAAAAafL3vwAAAACHBEi9AAAAALqY/T8AAAAAF2fWvQAAAABHFO0/AAAAABwKhD0AAAAAJYb7vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABL5C7YAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBURAk+AAAAAGks5r8AAAAAVJcJPgAAAAANMOw/AAAAAHgbgzoAAAAA2grdPwAAAAB47co9AAAAAB0E8r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADVetK0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA6oCaPQAAAACjTO2/AAAAAPBQzT0AAAAAaIrdPwAAAABnFyi9AAAAACuy/T8AAAAAK9SlOwAAAADS4fa/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIgKre0ojOeMAWyUTegDjAF0lEdAq66sGC7K73V9lChoBkdAi091yeZof2gHTegDaAhHQKuwxYjB2wF1fZQoaAZHQIubKteUpuxoB03oA2gIR0CruRp+DvmYdX2UKGgGR0CNYZBFd9lVaAdN6ANoCEdAq75nf2saKnV9lChoBkdAjUn8Oby6MGgHTegDaAhHQKu/f0A93bF1fZQoaAZHQI9sA7YChexoB03oA2gIR0CrwXN5D7ZWdX2UKGgGR0CM56Hi3ocJaAdN6ANoCEdAq8bjH+6y0XV9lChoBkdAjT6WjwhGIGgHTegDaAhHQKvKme2/i5x1fZQoaAZHQJDEJ9F4LThoB03oA2gIR0Cry8KveP7vdX2UKGgGR0CQmP/7iyY5aAdN6ANoCEdAq83O9YfW+XV9lChoBkdAipL93jdYXGgHTegDaAhHQKvU9W8RL9N1fZQoaAZHQI6MoPbwjMVoB03oA2gIR0Cr2tW3rleXdX2UKGgGR0CKHB2saKk3aAdN6ANoCEdAq9vw2Ifr8nV9lChoBkdAjzjhH9WIXWgHTegDaAhHQKvd57YTTOR1fZQoaAZHQIr2jjPv8ZVoB03oA2gIR0Cr46DnFHawdX2UKGgGR0CNtfo3aSLZaAdN6ANoCEdAq+dgdZJTVHV9lChoBkdAi1ZDFQ2uPmgHTegDaAhHQKvof0163RZ1fZQoaAZHQI62Mp1A7gdoB03oA2gIR0Cr6p7Gecx1dX2UKGgGR0CMe33np0OmaAdN6ANoCEdAq/E35HmRvHV9lChoBkdAjAadKNAC4mgHTegDaAhHQKv3QZXuE251fZQoaAZHQI2YEb3oLXtoB03oA2gIR0Cr+QD8DSw4dX2UKGgGR0CIvYgaFVT8aAdN6ANoCEdAq/sp5xBE8nV9lChoBkdAhlkUn5SFXmgHTegDaAhHQKwBB1DBuXN1fZQoaAZHQIp+DvCuU2VoB03oA2gIR0CsBLdsi0OWdX2UKGgGR0CKMr9tuUD/aAdN6ANoCEdArAXLqGDcunV9lChoBkdAi/YZaNdZ72gHTegDaAhHQKwHwvVVghN1fZQoaAZHQIwEMXpGFzxoB03oA2gIR0CsDd1fE4vOdX2UKGgGR0CM3Yx4Y77saAdN6ANoCEdArBQA3vQWvnV9lChoBkdAiVXmnO0LMWgHTegDaAhHQKwV1EMLF4t1fZQoaAZHQIqvOerdWQxoB03oA2gIR0CsGDg7PppwdX2UKGgGR0CMx18k2P1daAdN6ANoCEdArB4YLw4KhXV9lChoBkdAjSmA5imVJWgHTegDaAhHQKwhsu27Wd51fZQoaAZHQIyZ89SuQp5oB03oA2gIR0CsIsnKW9lFdX2UKGgGR0CK2zeCTUy6aAdN6ANoCEdArCTK8lHBlHV9lChoBkdAjBhfra/RFGgHTegDaAhHQKwqfEk0Jnh1fZQoaAZHQIivYbKifxtoB03oA2gIR0CsMDRTKkmAdX2UKGgGR0CL60xUNrj6aAdN6ANoCEdArDIH5rP+oHV9lChoBkdAhp3N/WlMy2gHTegDaAhHQKw1TkU9IPN1fZQoaAZHQIcFD/sE7nxoB03oA2gIR0CsO0pda+vhdX2UKGgGR0CE+oX668QJaAdN6ANoCEdArD7zQXyiEnV9lChoBkdAiG57pV0cO2gHTegDaAhHQKxACaBqbjN1fZQoaAZHQINstnscABFoB03oA2gIR0CsQhXPAwfydX2UKGgGR0CEyg+A3DNyaAdN6ANoCEdArEfrrE9+w3V9lChoBkdAir5VAzHjqGgHTegDaAhHQKxNQo/iYLN1fZQoaAZHQIpfPrIHTqloB03oA2gIR0CsTykpRXOodX2UKGgGR0COTiWOZLIxaAdN6ANoCEdArFKg0ygwoXV9lChoBkdAi4JlcY64lWgHTegDaAhHQKxYXGp++dt1fZQoaAZHQI5JzrJKaodoB03oA2gIR0CsW/wEyLyddX2UKGgGR0CQnrICU5dXaAdN6ANoCEdArF0RAv+OwXV9lChoBkdAjqkLEk0JnmgHTegDaAhHQKxfKiZfD1p1fZQoaAZHQI82fKdQO4JoB03oA2gIR0CsZOFm4AjqdX2UKGgGR0CPEaA3DNyHaAdN6ANoCEdArGmcJng5znV9lChoBkdAjU+lj/dZaGgHTegDaAhHQKxrgWHDaXd1fZQoaAZHQIz1Zo4+8oRoB03oA2gIR0Csbv+4TbnHdX2UKGgGR0CMibfl6qsEaAdN6ANoCEdArHXma+evp3V9lChoBkdAjJlrxy4nW2gHTegDaAhHQKx5oGJN0vJ1fZQoaAZHQIqUI6nzg/FoB03oA2gIR0Cserm+j/ModX2UKGgGR0CJcvBfKISEaAdN6ANoCEdArHy07QswtnV9lChoBkdAjkV0NKAavWgHTegDaAhHQKyCZNATqSp1fZQoaAZHQIuNbvoePq9oB03oA2gIR0CshqxgZ0jkdX2UKGgGR0CNl3lV94NaaAdN6ANoCEdArIh4EB8x9HV9lChoBkdAimrJBPbfxmgHTegDaAhHQKyL0sIVuaZ1fZQoaAZHQIvZ9sP8Q7NoB03oA2gIR0CsksIWxhUjdX2UKGgGR0CF9jmwJPZaaAdN6ANoCEdArJZoHeJpFnV9lChoBkdAiOm3okiUxGgHTegDaAhHQKyXf0h/y5J1fZQoaAZHQIR4ecWj459oB03oA2gIR0CsmXvnSv1UdX2UKGgGR0CHn+UL2HtXaAdN6ANoCEdArJ9WIbfgrHV9lChoBkdAhkfQpnYg72gHTegDaAhHQKyjhyhBZ6l1fZQoaAZHQIidiIJqqOtoB03oA2gIR0CspVNsnAqNdX2UKGgGR0CGUsXwb2lEaAdN6ANoCEdArKii0OVgQnV9lChoBkdAiLjz9jwx32gHTegDaAhHQKywhTfBN211fZQoaAZHQIcmWAd4mkZoB03oA2gIR0CstDGJN0vHdX2UKGgGR0CFmtykKu0UaAdN6ANoCEdArLVSt3fQ8nV9lChoBkdAh73HpKSPl2gHTegDaAhHQKy3WBJ7LMd1fZQoaAZHQFK56cy31BdoB0tYaAhHQKy4eTlDF611fZQoaAZHQIyKoKSgXdloB03oA2gIR0CsvTHlnyuqdX2UKGgGR0CPq/8WKuSwaAdN6ANoCEdArMDT5uZTh3V9lChoBkdAhSgNNi6QNmgHTegDaAhHQKzCVCx/ust1fZQoaAZHQIpsLrPdEb5oB03oA2gIR0Csx0K9oN/fdX2UKGgGR0CLA7CswL3LaAdN6ANoCEdArM1rofSx7nV9lChoBkdAjFhpg9eQdWgHTegDaAhHQKzRF6k69011fZQoaAZHQIpqYj8k2P1oB03oA2gIR0Cs0jNBfKISdX2UKGgGR0CM37E5QxetaAdN6ANoCEdArNVx2bG3nnV9lChoBkdAjPdPg3tKI2gHTegDaAhHQKzaRuSfUWl1fZQoaAZHQIxekjAzpHJoB03oA2gIR0Cs3gX6AOJ+dX2UKGgGR0CQKUXnQpnZaAdN6ANoCEdArN83/YJ3PnV9lChoBkdAg7RaCUX532gHTegDaAhHQKzkNIAfdRB1fZQoaAZHQIyPCfUWl/JoB03oA2gIR0Cs6tbdSEUTdX2UKGgGR0CQLuuoxYaHaAdN6ANoCEdArO6sLronr3V9lChoBkdAjTmJ4rz5GmgHTegDaAhHQKzv0dNnGsF1fZQoaAZHQI5YZCrtE5RoB03oA2gIR0Cs8xKJl8PXdX2UKGgGR0CN+tZU1hsqaAdN6ANoCEdArPewLy+YdHV9lChoBkdAi892eHzpYGgHTegDaAhHQKz7QWw/xDt1fZQoaAZHQJALqr2g399oB03oA2gIR0Cs/E+XRgJDdX2UKGgGR0CO6aLLpzLfaAdN6ANoCEdArQDC0MPSUnV9lChoBkdAiuoq2SdOI2gHTegDaAhHQK0H1k3CKrJ1fZQoaAZHQI78aySmqHZoB03oA2gIR0CtC5BZyMkydX2UKGgGR0CPYE3x4IKMaAdN6ANoCEdArQyrYRNAT3V9lChoBkdAjOm/foA4oGgHTegDaAhHQK0P2H2RJVd1fZQoaAZHQIvYORgZ0jloB03oA2gIR0CtFFeZXuE3dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (581 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 895.0678501992836, "std_reward": 169.36157034904727, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-24T17:31:52.102623"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fb8fda69d160459e52b631a45efcb8bfb551acf380f66ed050f6255f052a5f2d
3
+ size 2136